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Plasma is the most common state of visible matter in the universe and provides a myriad

of scientific and engineering applications. However, the complexity of these systems poses

a significant challenge for understanding and controlling plasmas. Fortunately, machine

learning is increasingly used to handle complex, nonlinear systems, and the field of machine

learning is advancing at an unprecedented pace, propelled forward by advances in sensing

technology and computing power. This thesis summarizes work towards applying modern

machine learning algorithms for fluid and plasma physics applications, with a focus on the

understanding and control of magnetohydrodynamic (MHD) phenomena and fusion-relevant

plasmas. Although this work is primarily focused on machine learning, first conventional

numerical techniques are used to implement a two-temperature Hall-MHD model into the

3D PSI-Tet code, followed by an investigation of the plasma dynamics in the HIT-SI ex-

periment. These simulations agree well with experimental measurements, and indicate that

low-densities are required for significant closed flux surfaces − a recommendation that is

now helping to guide the next generation of experimental design. Next, plasma modeling

with machine learning is discussed in the context of the hierarchy of plasma models and it

is illustrated that there is “plenty of room at the bottom” for physics-constrained reduced

order models that approximate more complex MHD or kinetic plasma models. Variants



of the dynamic mode decomposition are explored on experimental data and simulations of

the HIT-SI plasma device and indicate promise for magnetic mode spectroscopy and fore-

casting diagnostic measurements. Continuing, analytic reduced-order modeling methods are

extended using techniques in system identification for extracting reduced-order models di-

rectly from data. In the process, new methods are invented to enforce physical constraints

and stability in data-driven fluid and plasma models. For instance, the ability to build

data-driven models that obey global conservation of energy or global conservation of cross-

helicity is demonstrated, with promise for efficient simulations of ideal and resistive MHD

turbulence. With the new functionality implemented into the open-source PySINDy code

as part of this work, advanced system identification methods that can robustly extract dy-

namical equations from data are available to the larger scientific community. In total, this

work illustrates that new machine learning methods can be directly tied with known physi-

cal laws in plasma physics, have promise to significantly impact much of the plasma physics

and nonlinear systems fields, and can provide complementary, interpretable methods to the

relatively black-box deep learning techniques that are frequently used in the plasma physics

field for extracting diagnostic information, building reduced-order models, and performing

real-time control.



TABLE OF CONTENTS

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Nuclear fusion via magnetic confinement . . . . . . . . . . . . . . . . . . . . 1

1.2 Magnetic confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Hierarchy of plasma models . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Data-driven modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Motivation for this work and broader perspective . . . . . . . . . . . . . . . 18

1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 2: Two-temperature Hall-MHD simulations of the HIT-SI device . . . . . 22

2.1 The HIT-SI experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 HIT-SI simulations with the NIMROD and PSI-Tet codes . . . . . . . . . . . 25

2.3 Injector frequency Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 PSI-Tet Parameter scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Conclusions regarding two-temperature HIT-SI simulations . . . . . . . . . . 53

Chapter 3: Galerkin models for plasmas . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Projection-based reduced-order models . . . . . . . . . . . . . . . . . . . . . 57

3.2 Proper Orthogonal decomposition . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 POD-Galerkin models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Deriving constraints on projection-based models . . . . . . . . . . . . . . . . 66

i



Chapter 4: Dynamic mode decomposition for plasmas . . . . . . . . . . . . . . . . 76

4.1 Data from the HIT-SI experiment and simulations . . . . . . . . . . . . . . . 77

4.2 DMD algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Comparison of DMD algorithms on an experimental HIT-SI Discharge . . . . 83

4.4 DMD analysis on BIG-HIT simulations . . . . . . . . . . . . . . . . . . . . . 85

4.5 Conclusions from DMD work . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 5: Sparse system identification for plasmas and fluids . . . . . . . . . . . 102

5.1 Constrained system identification . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Initial constrained system identification results with 3D MHD simulations . 108

5.3 Stability-promoting system identification . . . . . . . . . . . . . . . . . . . . 111

5.4 The Schlegel and Noack trapping theorem . . . . . . . . . . . . . . . . . . . 111

5.5 SINDy with stability guarantees (trapping SINDy) . . . . . . . . . . . . . . 121

5.6 Trapping SINDy results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Trapping SINDy concluding remarks . . . . . . . . . . . . . . . . . . . . . . 143

Chapter 6: Robust sparse system identification with PySINDy . . . . . . . . . . . 147

6.1 Overview of the PySINDy Python code . . . . . . . . . . . . . . . . . . . . . 147

6.2 A survey of sparse regression optimizers . . . . . . . . . . . . . . . . . . . . 151

6.3 Advanced functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4 Closing remarks on robust system identification . . . . . . . . . . . . . . . . 171

Chapter 7: Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.1 Future machine learning work for plasmas . . . . . . . . . . . . . . . . . . . 175

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Appendix A: Derivation of SINDy constraints . . . . . . . . . . . . . . . . . . . . . . 218

Appendix B: Converting the Hall-MHD equations into magnetic field units . . . . . 221

Appendix C: Classification and prediction of plasma structures and instabilities with
neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C.1 Instability prediction and classification within plasma physics and fusion . . 226

C.2 The 2009-2017 DIII-D AE energetic particle database . . . . . . . . . . . . . 229

ii



C.3 Summary of results from prior work . . . . . . . . . . . . . . . . . . . . . . . 232

C.4 Recent attempts at spatiotemporally-localized AE classification . . . . . . . 233

iii



LIST OF FIGURES

Figure Number Page

1.1 Hierarchy of plasma models as a function of Knudsen number (Kn) and charge
separation distance (Λd). Reproduced with permission from Dr. Uri Shumlak. 9

1.2 Hierarchy of models coming from the 5-moment fluid model. There is one 5-
moment model per fluid, plus Maxwell’s equations. Here τei is the electron-ion
collision rate, εa is the inverse aspect ratio of a device, τL/R is the resistive
diffusion time, and τA is the characteristic timescale for an Alfvén wave tran-
sit. Data-driven methods can be applied to any place in the hierarchy for
discovering reduced-order models and model closures, although this work is
primarily focused with data-driven models for MHD. . . . . . . . . . . . . . 11

2.1 (a) A cross section of the device shows the toroidal structure, the two magnetic
helicity injectors, the surface probes, and the diagnostic gap. Reproduced from
Wrobel et al. [447], with the permission of AIP Publishing. (b) Representative
MHD equilibrium during sustainment showing an axisymmetric spheromak
(rainbow) surrounded by field lines tied to the injector (gray). . . . . . . . . 23

2.2 Toroidal current (yellow) and total injector current (purple) waveforms for the
HIT-SI experiment, discharge 129499. The black vertical lines indicate the
sustainment regime when the spheromak has formed and is being sustained
by the injectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Summary of bulk metrics, comparing PSI-Tet and NIMROD single and two-
temperature models. Density illustrations represent chord-averaged density
〈n〉 obtained from synthetic far-infrared interferometry. Magnitude of the
toroidal current |Itor| and current centroid (R,Z) are calculated as averages
of the four poloidal surface arrays. . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Summary of volume-integrated energies and powers for two-temperature PSI-
Tet simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 2D contours of Ti and Te in two-temperature PSI-Tet simulations with finj =
68.5 kHz indicate hot injectors and similar spatial distributions for Ti and Te. 38

iv



2.6 Left: Eq. 2.10 (dashed black lines) captures the first order time evolution of
Zinj(t) (color lines) for two-temperature PSI-Tet simulations. Middle: Equiv-
alent to the left illustration for two-temperature NIMROD simulations. Bot-
tom: Best fit values for C3, corresponding to the black lines from above,
indicate averaged C3 ≈ 0.23 and C3 ≈ 0.125 for two-temperature PSI-Tet and
NIMROD simulations, respectively. . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Two-temperature PSI-Tet simulations: Contours ofBz with limits±100 Gauss
and vector plots of B illustrated at time snapshots directly before spheromak
formation, in the Z = 0 midplane. The flux tubes form a nφ = 2 toroidal
Fourier structure, and oscillate at approximately 2finj. During spheromak
formation, the flux tubes merge to determine the direction of the toroidal
current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 A 3D isosurface of J · B/|B|2 = 13 at finj = 14.5 kHz, before spheromak
formation (t = 25 µs), indicates paths connecting opposite injector mouths
and suggests the formation of a current loop. . . . . . . . . . . . . . . . . . . 45

2.9 Time evolution of important quantities for the wall temperature scan of two-
temperature HIT-SI simulations with finj = 14.5 kHz. 〈Ti〉 and 〈Te〉 are in
solid and dashed lines, respectively. . . . . . . . . . . . . . . . . . . . . . . . 46

2.10 Time-averaged Te and Jy on a toroidal slice for Twall = 1 eV, 10 eV in two-
temperature PSI-Tet simulations at finj = 14.5 kHz. . . . . . . . . . . . . . . 48

2.11 Time evolution of important quantities for the wall density scan of two-
temperature PSI-Tet simulations with finj = 14.5 kHz. 〈Ti〉 and 〈Te〉 are
in solid and dashed lines, respectively. . . . . . . . . . . . . . . . . . . . . . . 49
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POD: Proper orthogonal decomposition, more often called the biorthogonal decomposi-
tion (BOD) in plasma physics. Also known in other scientific fields as principal compo-
nent analysis (PCA), Karhunen-Loève expansion, empirical orthogonal functions, and
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AE: Alfvén eigenmode, a special class of mixed MHD-kinetic instabilities that occur in
some plasmas. There are many variations, including toroidal AE (TAE), reversed-shear
AE (RSAE), beta-induced AE (BAE), and eccentricity AE (EAE).
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FPR: False positive ratio, defined through the number of false positives divided by the
number of false positives and true negatives. Also called “fall-out”.

HIT-SI: The helicity injected torus with steady inductive helicity injection (HIT-SI) device
at the University of Washington. See Sec. 2.1 for a detailed description.
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Chapter 1

INTRODUCTION

Plasmas are ionized gases that are ubiquitous in the universe. Most visible matter, includ-

ing stars, interstellar gas clouds, and planetary magnetospheres, is plasma. Nuclear fusion

powers the stars in the universe, and in the future, can hopefully help to provide sustain-

able power for societal needs, including carbon dioxide removal from the atmosphere. Be-

yond fusion, plama prediction and control are also central to numerous scientific, industrial,

and technological applications, including materials processing (e.g. microchip fabrication),

space physics (e.g. space weather, spacecraft propulsion), and other energy applications (e.g.

plasma switches). Many plasmas of interest are highly nonlinear, providing serious challenges

for the understanding and control of plasma phenomena. As a result, plasma simulations

often take days to months of computer time to simulate experimentally relevant time-scales;

this is many orders of magnitude longer than that needed by typical engineering applications,

which aim to control plasma dynamics on the millisecond or even microsecond timescales.

The overarching theme of this work is the discovery and exploration of new techniques in

applied mathematics and machine learning that can facilitate the physical understanding,

forecasting, and real-time control of complex plasma phenomena. There is a particular fo-

cus towards fusion-regime plasmas although much of this work remains relevant for general

magnetohydrodynamic and neutral fluids.

1.1 Nuclear fusion via magnetic confinement

Nuclear fusion occurs when two atomic nuclei come close enough to fuse via the strong inter-

action. There are many types of nuclear fusion, but all require extremely high temperatures

in order to overcome the repulsive Coulomb force between the nuclei. The sun fuses because
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of its extraordinarily large mass; the mass in the center of the sun can fuse many different

atomic elements because gravity confines the plasma and the temperatures can become im-

mense. In the laboratory, magnetic confinement fusion relies instead on large magnetic fields

which squeeze and confine the plasma to approximately fixed trajectories. There are other

techniques, such as inertial confinement fusion (ICF), which produce an implosion (often

driven by lasers) to rapidly heat and compress a small capsule − recent progress puts ICF at

the cusp of break-even energy generation where enough fusion is produced to offset the input

energy of the lasers [72]. By far the most accessible fusion reaction (the reaction with the

largest cross-section) in the laboratory is with two different isotopes of hydrogen, deuterium

and tritium, which produce a high-energy alpha particle and an even higher-energy neutron,

D + T→ 4He(3.5MeV) + neutron(14.1MeV). (1.1)

In order for this reaction to occur, the plasma must be dramatically heated and then

kept distant from material surfaces (which by necessity must be kept relatively cool to avoid

damage and sputtering into the device). When enough fusion is occurring, these fusion

products can “self-heat” the plasma, enabling a reduction in the amount of external heat

needed to sustain the fusion processes. In order to harness the energy generated by fusion,

scientists need a way to collect the energy from these fusion products. The conventional

technique is to surround the plasma device with a lithium-containing blanket. Neutrons

slow and deposit energy as heat into the blanket, and interact with lithium atoms, producing

more tritium for the DT reaction in Eq. (1.1).

In the magnetic confinement regime of hot plasma and large magnetic fields, the plasma

is often described well (at least at large scales) by various forms of magnetohydrodynamics

(MHD). Dynamics associated with particle-dynamics (kinetic effects) are also often observed

in these plasmas, but are usually first order corrections to MHD. In order to understand how

to confine hot plasma, the principles of magnetic confinement will now be reviewed.
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1.2 Magnetic confinement

Fundamentally, magnetic fields can confine charged particles because of the perpendicular

nature of one of the Lorentz force terms. The Lorentz force acts on the component of a

charged particle’s velocity that is perpendicular to the field, causing the particle to exhibit

helical orbits around magnetic field lines with a characteristic radius called the Larmor radius,

rLs ≡
uTs
ωcs

=

√
msTs
qsB

, uTs ≡
√
Ts
ms

, ωcs ≡
qsB

ms

. (1.2)

Here the s subscript indicates that the definition is for particle species s, qs is the particle

charge, B = |B| is the magnitude of the magnetic field, Ts is the temperature of the fluid of

species s, uTs is the particle thermal velocity of species s, and ωcs is the cyclotron frequency

of species s. The Larmor radius and the cyclotron frequency are fundamental length and

time scales in a plasma. Unless specified otherwise, SI units are assumed for all variables

except the temperature in units of eV.

For brevity, the particles species subscript is often omitted going forward, especially when

describing MHD models. Since charged particles follow magnetic field lines in helical orbits,

one approach for confining plasma is to generate large magnetic fields with magnetic coils.

As the magnetic field becomes very large, the Larmor radius shrinks inversely with the mag-

nitude of the magnetic field. This causes a reduction in the heat conduction perpendicular

to the magnetic field and therefore a reduction in the heat flux at the device walls. Typically

the amount of confinement is measured by the amount of magnetic field energy required to

contain a given amount of thermal energy, defined through the ratio

β ≡
∫
pd3x∫
B2

2µ0
d3x

. (1.3)

Here p is the plasma pressure and µ0 is the vacuum permeability. Since very hot plasmas

are required for fusion, high β is desirable. Unfortunately, there are physical limits on the

values of β, and different plasmas and device topologies have unique limits on the achievable
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β [289].

Since plasma streams freely along field lines, heat conduction is far larger in the di-

rection parallel to the magnetic field lines than in the perpendicular direction. For singly

charged deuterons and Te = Ti, the ratio of the parallel to perpendicular (classical) thermal

conductivity is [52]
k‖,e
k⊥,i
≈
√
mi

me

(ωciτi)
2, (1.4)

where mi is the ion mass, me is the electron mass, τi is the ion-ion collision time for mo-

mentum exchange, and the parallel and perpendicular directions refer to directions relative

to the local magnetic field lines. For typical parameters in a fusion device, such as a toka-

mak, one has temperatures Te = Ti = 3 keV, magnetic field strength B = 5 T, plasma

density n = 1020 m−3, and finds k‖,e/k⊥,i ≈ 1013! In reality, the perpendicular conductivity

is much larger than the classical value because of turbulence, but the point remains that heat

is rapidly lost along magnetic field lines, and much more slowly lost across magnetic field

lines. To avoid large parallel heat loss, plasma devices are almost always closed magnetic

configurations, and many are toroidal in shape.

1.3 Hierarchy of plasma models

To start modeling a dynamical plasma, it is worth considering the transition from a gas

to a plasma. The gaseous state is typically modeled as a large collection of neutral atoms

or molecules that only interact over very small distances. For the most part, particles in

the gas fly around unperturbed by other particles, and occasionally, a collision occurs when

two (or more) particles come exceedingly close to one another. When a gas is heated, this

typically increases the average speed of the particles, but with sufficiently high heats, the

collisions between particles can begin to knock the electrons off the atoms. When only a

small percentage of the atoms have lost electrons, this system is often referred to as a “weakly

ionized gas”. When a somewhat larger amount of the atoms have lost electrons, the system

is called a plasma.
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Despite this relatively smooth transition from gas to plasma, plasmas behave far dif-

ferently than neutral gases because plasmas are ionized gases. The charged particles (the

positive charged ions and negatively charged electrons) can now feel electromagnetic forces

over much larger spatial scales than the previous small scales associated with interatomic

collisions of neutral atoms. The characteristic scale for the field of a charged particle to

be “screened out” (exponentially damped) by the nearby charged particles of opposite sign

is the Debye length λD. From this fundamental fact, that λD can be far larger than an

interatomic spacing, emerges much of the incredible complexity and practicality of plasma

dynamics.

To get a first handle on modeling the complex dynamics of plasmas, consider the most

general view of a plasma as a collection of charge particles moving in an electromagnetic

field. Classically, each particle has a well-defined position x and velocity v. The density of

a particular particle species s can then be written

Ns(x,v, t) =
∑
i=1

δ(x− xi(t))δ(v − vi(t)), (1.5)

where δ is a delta-function and the sum is over all particles of species s in the plasma.

Assuming that the plasma can be described classically, if the position and velocity for every

particle in the plasma are known at one time, the positions and velocities for all time can be

determined with the Klimontovich equation (derived using Newton’s second law). Newton’s

second law for a charge particle moving in an electromagnetic field is the Lorentz force law

dv

dt
=

e

m
(E + v ×B), (1.6)

where e is a unit of electron charge, and E and B are the electric and magnetic fields

respectively. Throughout this work, it is assumed that relativistic effects are negligible,

although relativistic effects are straightforward to include. Of course, charged particles also

generate electromagnetic fields, so self-consistent equations for the evolution of E and B are
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also required − Maxwell’s equations,

∇ ·E =
ρq
ε0
, ∇×E = −∂B

∂t
, (1.7)

∇ ·B = 0, ∇×B = µ0J +
1

c2

∂E

∂t
.

Here ε0 is the vacuum permittivity, c is the speed of light, and the charge density ρq and

current density J must be computed from the plasma itself.

However, the Klimontovich equation is impractical because it requires an infeasible

amount of knowledge − the position and velocity of every particle in the plasma (often

there are greater than 1020 particles in the plasma) at some initial time t. In order to obtain

a useful model for plasma behavior, the single particle distribution function for species s,

fs(x,v, t), is defined as the probability that a number of species s particles occupies a volume

of phase space (x,v, t). The evolution equation for fs(x,v, t) can be derived directly from

the Klimontovich equation with an ensemble average and by assuming that the mean-free-

path time is much larger than the time during a collision, τmfp � τcoll, so that collisions can

be treated as isolated events that can be entirely packaged into a single “collision term” on

the right-hand side (RHS) of the Boltzmann equation below,

∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

(E + v ×B)
∂fs
∂v

=
∂fs
∂t
|coll. (1.8)

The collision term on the RHS is a sum of all the types of collisions that occur in the

plasmas − Coulomb collisions, nuclear fusion collisions, neutral-ion collisions, and so forth.

Some of these collisions, such as ionization and recombination, transform particles between

species. Setting the collision term to zero results in the Vlasov equation, which is useful for

collisionless plasmas including many space plasmas. Now the particle number density ns for

particle species s and the corresponding fluid velocity us are defined through the zeroth and
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first moments of the distribution function,

ns =

∫
fsdv, us =

∫
vfsdv, (1.9)

and the definitions for the charge density ρq and electromagnetic current J follow,

ρq =
∑
s

ρq,sns, J =
∑
s

ρq,snsus. (1.10)

Particle-in-cell (PIC) and other kinetic methods use the Boltzmann or Vlasov equations

from Eq. (1.8) by discretizing space and time, and using a small number of discrete “super-

particles” that represent averages over a much larger set of plasma particles. This is still

an attempt to track all the particles and their interactions in a 7-dimensional phase space,

so these models are computationally expensive and emergent simulation dynamics can be

difficult to understand analytically. Further reductions are often made for realistic plasmas.

This equation can be reduced further, to the familiar 4-dimensional space-time (x, t), by

taking moments of the Boltzmann equation in velocity space. Typically the zeroth, first,

and second moments are taken to produce the 5-moment model for each particle species

(dropping the subscripts from now on) [232],

ρ = m

∫
f(v)dv, (1.11)

ρu = m

∫
vf(v)dv, (1.12)

P̂ = m

∫
(v − u)(v − u)f(v)dv, (1.13)

Π = P̂ − pδ, (1.14)

p =
m

3

∫
|v − u|2f(v)dv, (1.15)

h =
m

2

∫
|v − u|2(v − u)f(v)dv, (1.16)

E =
p

γ − 1
+

1

2
ρu2. (1.17)
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Here ρ = mn is the fluid (mass) density, u is the fluid velocity, P̂ is the pressure tensor,

p is the scalar pressure, E is the energy density, γ is the adiabatic index, Π is the viscous

stress tensor, and h is the heat flux. Now a 5-moment equation can be defined for each of

the fluids corresponding to each particle species,

∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
|coll, (1.18)

∂ρu

∂t
+∇ · (ρuu+ pδ + Π) =

ρe

m
(E + u×B) +

∂(ρu)

∂t
|coll, (1.19)

∂E
∂t

+∇ · ((E + p)u+ u ·Π + h) =
ρe

m
u ·E +

∂E
∂t
|coll. (1.20)

Maxwell’s equations in Eq. (1.7) are still required for the time evolutions of E and B.

Throughout this work a plasma of singly charged deuterons and electrons is assumed, so

that the charges of the particles will be everywhere assumed equal or opposite to a unit of

electron charge, e. Note that terms like uu are shorthand for the tensor in index notation

uiuj (not to be confused with the species index), Π = Πij, and similarly for the pressure

tensor P and delta function δ. The model is complete once closures are introduced specifying

the form of the stress tensor Π and the heat flux h.

More complicated 10-moment [157] and 13-moment [401] models can be calculated by

taking additional moments of the Boltzmann equation, although these models tend to be

significantly harder to interpret and numerically implement [297]. Many of the plasma model

varieties are summarized in Fig. 1.1, which plots the different plasma models as a function of

the Knudsen number Kn (ratio of the mean free path to the smallest length scale of interest)

and charge separation Λd (the degree to which electrical charge is relevant). For instance,

when Kn� 1, Λd � 1, electrical charge is fairly unimportant and mean free paths are very

large, typifying the collisionless kinetic regime, which is described by the Vlasov equation.

There are a very large number of models that stem from the 5-moment model, depending

on the assumptions made, the composition of the plasma, and so on. If τ denotes the smallest

timescale of experimental interest, the primary assumption from the Boltzmann equation to
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Figure 1.1: Hierarchy of plasma models as a function of Knudsen number (Kn) and charge
separation distance (Λd). Reproduced with permission from Dr. Uri Shumlak.

the 5-moment model was that the electron-electron, ion-ion, neutral-neutral, etc. collision

rates satisfy τee � τ , τii � τ , τnn � τ , so that each species is in separate local equilibrium.

If there is a single species of ion and single species of neutral particle, the system can

be represented with a coupled three-fluid model with ionization, recombination, and other

atomic processes. If the plasma is assumed to be fully ionized in the domain of interest, the

system can be reduced significantly to the two-fluid model by removing the neutral terms

from the equations. In this limit, the ion and electron species are in separate local thermal

equilibria, and the equations are often closed with the Braginskii closure [52]. With additional

assumptions, a whole host of multi-fluid and single-fluid models can be defined, summarized

in Fig. 1.2. With enough assumptions, single-fluid conducting models can be derived and

such models are traditionally called MHD. For instance, if the dynamic velocities satisfy

v � c, the dynamic frequencies satisfy ω � ωpe, and the smallest experimental length scale

satisfies L � λD, the system is well-described by a set of equations for a single conducting

MHD fluid. Ideal MHD is obtained with even further assumptions, including zero dissipation
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from resistive or viscous effects.

1.4 Magnetohydrodynamics

Magnetohydrodynamic models are the most common types of models used to simulate the

macroscopic dynamics of fusion-relevant plasmas because magnetic fields are often very large

(Larmor radii are very small) and MHD equilibria are far better understood than other

forms of equilibria. After all, most future fusion reactors would prefer to operate in steady-

state operation, although there are pulsed-pulse designs as well [126]. This work focuses

on a single-fluid, two-temperature Hall-MHD model consisting of a single ion species and

electrons, which includes resistive dissipation, allows for some two-fluid effects, and reduces

to ideal MHD and many other MHD variants in the appropriate limits. Switching from

evolution equations for Ee and Ei to the electron and ion temperatures Te = mepe/2ρ and

Ti = mipi/2ρ produces,
∂ρ

∂t
= −∇ · (ρu) +D∇2ρ, (1.21)

∂u

∂t
= −u · ∇u+

1

min

[
J ×B −∇

(
n(Ti + Te)

)
−∇ ·Π

]
, (1.22)

∂Ti
∂t

= −u · ∇Ti + (γ − 1)

[
−Ti∇ · u−

1

n
(∇ · hi −Qi)

]
, (1.23)

∂Te
∂t

= −ue · ∇Te + (γ − 1)

[
−Te∇ · ue −

1

n
(∇ · he −Qe)

]
, (1.24)

∂B

∂t
= −∇×E. (1.25)

Note that there is a single density evolution equation and a single velocity field evolution

equation. Quasi-neutrality n = ne ≈ ni (L � λD) has been assumed, the fluid velocity

satisfies u ≈ ui, and ue is determined through

ue = u− J

ne
. (1.26)



11

5N-Moment model

Three-fluid models with  
ionization, recombination, and  

other chemistry

Two-fluid models with 
Coulomb collisions

nn ≪ ne, ni

Braginskii closures

Atomic & molecular chemistry

Single-fluid, extended  
two-temperature MHD

Resistive MHD

Hall-MHD

Single-fluid, extended single-
temperature MHD

, , 

, 

u ≪ c ω ≪ ωpe
L ≫ λD ni ≈ ne


τL/R ≫ τA

Ideal MHD Reduced MHD


ϵa ≪ 1

Higher-order closures

τei ≪ τ


me → 0

Data-driven closures

Data-driven models

Boltzmann equation
τee ≪ τ
τii ≪ τ

τnn ≪ τ
⋮


L ≫ di

Figure 1.2: Hierarchy of models coming from the 5-moment fluid model. There is one 5-
moment model per fluid, plus Maxwell’s equations. Here τei is the electron-ion collision rate,
εa is the inverse aspect ratio of a device, τL/R is the resistive diffusion time, and τA is the
characteristic timescale for an Alfvén wave transit. Data-driven methods can be applied to
any place in the hierarchy for discovering reduced-order models and model closures, although
this work is primarily focused with data-driven models for MHD.
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For a quasi-neutral plasma with equal electron and ion temperatures, λD can be defined

through

λD =

√
ε0T

ne2
. (1.27)

T = Te = Ti is the plasma temperature. The model is completed with the following closures:

µ0J = ∇×B, (1.28)

E = −u×B + ηJ +
1

ne

(
J ×B −∇(nTe)

)
+ fme

me

ne2

∂J

∂t
, (1.29)

hs = −n
[
χ‖,sb̂b̂+ χ⊥,s

(
I − b̂b̂

)]
· ∇Ts, (1.30)

Qi = − (∇u)T : Π−Qcoll, (1.31)

Qe = ηJ2 +Qcoll, (1.32)

Qcoll = 2× 10−14 n

T
3
2
e

(Ti − Te), (1.33)

Π = −ν(∇u+ (∇u)T − 2

3
I∇ · u), (1.34)

Here b̂ is a unit vector in the direction of the magnetic field, η is the plasma resistivity, ν is the

plasma viscosity, χ‖ (χ⊥) is the heat conductivity parallel (perpendicular) to the magnetic

field, and I is the identity matrix. Strictly, Eq. 1.21 should not contain a diffusive term.

However, an artificial particle diffusivity D = 250 m2/s is used to prevent numerical issues

with small scale density oscillations characteristic of the dynamics in HIT-SI simulations

that are discussed in Sec. 2.1; this technique is common in MHD simulations of dynamic

plasma systems [178, 327] and in other contexts such as the analytic work in Chapter 3 it

should be understood that this term is dropped. Similarly, with the assumptions made to

derive this model, the last term in Eq. (1.29) should be omitted; the term is included here

for completeness because it provides a stabilizing effect on the magnetic field evolution for



13

HIT-SI simulations that are described in Chapter 2.

In the ideal, single-temperature Hall-MHD limit with zero-velocity (no-slip) boundary

conditions, there are several global conserved quantities within a bounded volume: the total

energy

W ≡
∫ (

B2

2µ0

+
1

2
ρu2 +

p

γ − 1

)
d3x, (1.35)

total cross-helicity (not an ideal invariant of Hall-MHD, but an ideal invariant of standard

MHD assuming B · n̂ = 0 and u · n̂ = 0),

Hc ≡
∫
u ·Bd3x, (1.36)

total magnetic-helicity (requires a perfectly conducting boundary condition to be conserved),

Hm ≡
∫
A ·Bd3x, (1.37)

and total generalized-helicity [133],

Hg ≡
∫

(A+ diu) · (B + di∇× u)d3x. (1.38)

Note that Hm and Hg are not gauge-invariant except with a perfectly conducting boundary

or other slight modifications to fix this ambiguity [31]. Here the ion inertial length di is the

characteristic length associated with the Hall-term and represents the scale at which ions

decouple from electrons. The ion inertial length is defined through the ion plasma frequency

ωpi,

di ≡
c

ωpi
=
mi

e

√
1

µ0ρ
, ω2

pi ≡
nie

2

miε0
. (1.39)

For the no-slip boundary, mass is also conserved. Momentum is not conserved (unless B = 0

everywhere on the boundary), even in the inviscid limit with B · n̂ = 0, because momentum

is transported along magnetic field lines. Note that an inviscid MHD model is one with no
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dissipation (resisitivity and viscosity are negligible), while ideal MHD refers to an inviscid

model with additional assumptions such as di = 0. These global invariants are important

constraints on the underlying structure of the dynamics, and Chapter 3 will show that one

can build this extra structure directly into data-driven models.

1.4.1 MHD equilibria

Most future fusion reactor concepts require a device that operates in steady-state. Many

other plasmas are also quasi-steady-state or otherwise exhibit equilibrium features. There-

fore, understanding basic MHD equilibria is important for designing machine learning meth-

ods and many other tasks. The ideal MHD equilibrium equations can be obtained by ne-

glecting dissipation, setting Eqs. (1.21) − (1.25) equal to zero, and assuming u = 0, i.e. it

is a static equilibrium. This gives

J ×B = ∇p, (1.40)

∇×B = µ0J ,

∇ ·B = 0.

Many fusion devices are toroidal and exhibit toroidal axisymmetry. Therefore these equations

only depend on the coordinates (R,Z) in a cylindrical coordinate system (R,Z, φ). In this

case, the poloidal flux stream function ψ is defined such that

B = Bφeφ +
1

R
∇ψ × eφ, (1.41)
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where eφ is a unit vector in the toroidal direction. Rewriting the MHD equilibrium equations

in terms of ψ leads to the Grad-Shafranov equation [148, 395],

∆∗ψ = −µ0R
2 dp

dψ
− 1

2

d(RBφ)2

dψ
. (1.42)

∆∗ ≡ R
∂

∂R

1

R

∂

∂R
+

∂2

∂Z2

Here p(ψ) is the pressure, which is now a function of the poloidal flux. By specifying the

two free functions, p and RBφ, one can solve the Grad-Shafranov equation numerically for

the magnetic field and current density in the MHD equilibrium. This is a very challenging

partial differential equation (PDE) to solve analytically, and there are many different ways

to solve it numerically [194, 159]. Once the equilibrium is found, there are a number of

important quantities to compute that characterize the quality of the equilibrium, including

the plasma β (confinement quality), plasma safety factor (a metric of device stability), and

more general stability criteria.

1.5 Data-driven modeling

This introduction has illustrated that there are a tremendous number of known plasma

models of varying model complexity, from MHD to the Klimontovich equations. However, a

large gap exists in the lower levels of this hierarchy between simple circuit models and the

many MHD variants. These low-level models are motivated because higher fidelity models

typically require computationally intensive and high-dimensional simulations [73, 328, 150],

obfuscating the dynamics and precluding model-based real-time control. Moreover, many

high-dimensional nonlinear systems tend to evolve on low-dimensional attractors [414]. Plas-

mas across a large range of parameter regimes, geometry, and degree of nonlinearity exhibit

this feature [196, 432, 341, 434, 409, 69, 152, 207]. In these cases, the evolution of only a few

coherent structures, obtained from model-reduction techniques [35, 36], can closely approx-

imate the evolution of the high-dimensional physical system. Additionally, recent progress

in theoretical, data-driven, and machine learning methods are revolutionizing the analysis,
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modeling, and control of high-dimensional, nonlinear systems, especially in the field of fluid

mechanics [320, 323, 414, 77, 374, 63, 65].

The applications of reduced-order models (ROMs), i.e. low-dimensional models, include

understanding reduced physical mechanisms [261, 153], computationally efficient simula-

tions [185], digital twins (virtual time-dependent models for a dynamic system, constantly

updating with sensor measurements) [213], and real-time control [362, 131, 246]. For ex-

ample, acceleration of ICF simulations and digital twins can facilitate an exploration of the

implosion parameter space [185], surrogate closure models can lead to more accurate and

efficient fluid simulations [436], surrogate gyrokinetic transport models can speed up toka-

mak simulations by orders of magnitude [91, 431], and steady-state tokamak operation will

require the active avoidance or mitigation of disruptions, which can seriously damage com-

ponents of the device [255]. For these real-time control challenges, there are a wealth of

model-based control techniques such as model predictive control [7] that can be leveraged

for plasma systems. However, existing models like MHD or PIC simulations are often too

high-dimensional and computationally expensive to operate in real-time, and heuristic mod-

els are often too low-fidelity to be useful for control. Deep learning methods are increasingly

making significant contributions in plasma physics, but it remains difficult to interpret these

models or build in guarantees regarding model stability or performance.

In addition to being computational efficient, reduced-order models can help uncover key

mechanisms that govern the evolution of the dominant coherent structures. This aspect

of reduced-order modeling has a rich history, from the famous Lorenz model in 1963 [261],

through the present era, including the low-order mechanistic model of the cylinder wake in

2003 by Noack et al. [320]. Recently, data-driven algorithms, like the algorithms described

in Chapter 5, have shown potential to uncover similarly interpretable and useful models.

Examples include related fluid systems [257, 256] as well as recent work that uncovers a

Lorenz-like model of electroconvective chaos by Guan et al. [153]. Moreover, increasingly

reduced order models are used to describe key mechanisms in plasma physics, including

“predator-prey” dynamics in gyrokinetic simulations [225], direct data-driven discovery of



17

reduced MHD or kinetic equations from a plasma dataset [8], data-driven fluid models for

the L-H mode transition in tokamaks [100], and the data-driven models for fully 3D MHD

simulations of the HIT-SI experiment presented in Chapter 5. These models can be critical

for providing insight into the physical system, including energy transfers and other nonlinear

interactions.

Reduced-order models traditionally fall into two categories: projection-based model re-

duction and data-driven system identification. Projection-based model reduction is achieved

by first computing the evolution of a governing PDE, often by spatially discretizing the

domain, resulting in a high-dimensional system of ordinary differential equations (ODEs).

Then a low-dimensional orthogonal basis is computed, often via the proper orthogonal de-

composition (POD) [177, 414]. This process is also called the biorthogonal decomposition

(BD or BOD) in the plasma physics community. Finally, the high-dimensional model is

“Galerkin-projected” onto this basis [441, 34], resulting in an efficient reduced system that

describes how the amplitudes of the POD modes evolve in time. However, this projection is

intrusive since it requires knowledge of the governing physics and high-fidelity measurements

or a high-fidelity numerical solver. The POD method will be reviewed and discussed along

with POD-Galerkin methods for MHD models in Chapter 3.

In contrast, system identification techniques attempt to identify data-driven models di-

rectly from measurement data, often without knowledge of the governing equations. Increas-

ingly, data-driven methods are producing effective bases beyond POD for different exper-

imental or computational tasks [414]; modern methods include balanced POD [441, 372],

spectral POD [425], dynamic mode decomposition (DMD) [393, 371, 427], the Koopman

decomposition [229, 295, 62], resolvent analysis [284, 265], and neural-network-based au-

toencoders [266, 81, 243]. Data-driven techniques, including modern machine learning, are

also being widely applied to discover dynamical systems models of complex physical sys-

tems [47, 394, 59, 360, 359, 450, 222, 438, 277, 114, 344, 325, 25, 226], with a particular empha-

sis on hybrid physics-inspired or physics-informed machine learning [359, 26, 257, 98, 298, 97].

In fluid mechanics, sparse model discovery has been used to develop interpretable nonlinear
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models that enforce known physics by construction [59, 257]. This work provides similar

models for plasmas described by MHD in Section 5.

1.6 Motivation for this work and broader perspective

There is an unprecedented opportunity to apply and formulate modern machine learning and

reduced-order modeling techniques for understanding, forecasting, and controlling plasmas.

Many reduced order modeling methods for fluids rely on the structure (particularly quadratic

nonlinear structure) of the Navier-Stokes equations. There are many open questions about

how to generalize these useful and powerful methods for plasmas that are well-described by

various forms of MHD or Boltzmann-like equations.

Machine learning is now ubiquitous in plasma physics for a large number of tasks: inter-

preting diagnostic data [280], maximizing diagnostic information [308], prediction of disrup-

tion or other operational limits [364], and reduced order models for modeling phenomena as

disparate as nonlinear opacities in ICF [224] to speeding up PIC simulations [233]. Almost

all of this work is done with deep learning methods, although recent work that integrates

Bayesian modeling is helping to fill in some important gaps in the literature and allowing for

uncertainties on data-driven model predictions [345, 174, 346, 247, 396, 188]. Deep learning

methods are useful and powerful but have some significant drawbacks: (1) they are often

“physics-blind” and lack interpretability and (2) often require large troves of data to train

successful models. Plasma devices such as tokamaks have fundamental limits on diagnostic

access, tight operational margins in order to avoid disruption and damage, and important

but intermittent or rare mode activity. For instance, in a DIII-D tokamak database built

specifically for identifying Alfvén eigenmodes (described in Appendix C.2), more than 99%

of the data still exhibits no activity whatsoever.

Despite these rare features, DIII-D has decades of diagnostic data obtained in vast ranges

of operational parameter space, so control models from deep learning or other expensive

methods can be trained offline before consolidation with a real-time control algorithm. These

large and expansive databases are optimal targets for these deep data-driven approaches,
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which excel at extracting patterns from high-dimensional spaces [144]. Given that a high-

quality database is available, machine learning techniques have distinct advantages over other

ROMs: (1) offline training allows for large nonlinear models, (2) multi-machine datasets

facilitate finding universal plasma models across fusion devices [300], and (3) models can be

generated for plasma instabilities and other plasma dynamics that are currently not well-

understood or not amenable to any sort of linearization. Along these lines, Appendix C

illustrates some collaborative work predicting Alfvén eigenmodes in the DIII-D tokamak.

However, there are fewer reduced order plasma modeling paradigms that allow for other

attractive model features such as interpretability, sparse or low-dimensional models, physics-

constrained models, models that can be trained online, and models that can be trained

on minimal datasets. There are many benefits that can come from incorporating physical

priors into system identification, including reducing the space of possible models and en-

forcing hard constraints such as ∇ · B = 0. Interestingly, the plasma physics community

can follow the lead of the field of fluid mechanics, which has seen unprecedented progress in

interpretable data-driven models that are connected in various ways to the underlying fluid

physics. These methods are used along with more traditional deep learning, helping to fill

in gaps of understanding and predictive capability. Because these models are often physics-

informed, significant analytic work can be required to reformulate these methods for plasma

physics. For instance, the incompressible Navier-Stokes equations has a single nonlinearity

through the convective derivative term while much of the interesting dynamics in magne-

tohydrodynamic flows is driven by the Lorentz nonlinearity; while both nonlinearities are

quadratic in the fluid fields, they lead to incredibly different dynamic behaviors, including

significant differences in invariant quantities (e.g. helicity), turbulent cascades (e.g. inverse

cascades), and equilibrium configurations (e.g. static pressure confinement). Data-driven

plasma models should also be responsive to the fundamental anisotropy induced by mag-

netic fields in magnetohydrodynamic fluids. Thus, much of this work is focused on adapting

data-driven models from fluid mechanics (convective nonlinearity) to magnetohydrodynam-

ics (convective, Lorentz, and other nonlinearities). There is also exciting work to be done for
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both fields in the realm of kinetics. Beyond interpretable reduced-order models, there are

now modern algorithms for sparse sensor placement (for optimizing diagnostic information

from a set of limited sensors), magnetic mode spectroscopy, and connections to be made

with the large literature regarding plasma waves and instabilities. It is in this interpretable,

physics-informed, and low-dimensional regime that this work paves a unique path in the

intersection of plasma physics and machine learning.

The primary technical contributions of this work to the intersection of machine learning

and plasma physics include: (Chapter 3 and Ref. [211]) formalization of a class of reduced-

order models for a number of MHD systems, including deriving constraints on these low-

dimensional models from global conservation laws, (Chapter 4 and Ref. [207]) exploration

and development of a number of dynamic mode decomposition methods for magnetic spec-

troscopy and forecasting plasma measurements with linear models, (Chapter 5 and Ref. [211])

constrained data-driven identification of reduce-order models directly from plasma measure-

ment data, (Sections 5.3−5.7 and Ref. [209]) building global stability theorems into system

identification methods for producing provably stable data-driven models, and (Chapter 6

and Ref. [210]) incorporation of these innovations and other work in the field of system

identification into the open-source PySINDy code.

1.7 Outline

The presentation of this work will proceed as follows: Chapter 2 will detail initial work

with more traditional numerical simulations in plasma physics. A two-temperature Hall-

MHD model is implemented in the 3D PSI-Tet code, and used to investigate how these

changes alter the dynamics in the HIT-SI device. In chapter 3, projection-based ROMs for

plasmas are introduced with a focus on classic Galerkin projection methods. Chapter 4

begins the exploration of data-driven models, detailing work exploring the dynamic mode

decomposition for magnetic spectroscopy and forecasting. In chapter 5, sparse regression

techniques are introduced for identifying dynamical and nonlinear models directly from data.

Methods are demonstrated to constrain these techniques with global conservation laws in
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fluids and plasmas, and analytic results from nonlinear stability theory. Chapter 6 concludes

with a discussion and implementation of a number of robust variants of sparse regression,

facilitating the analysis and modeling of a large number of nonlinear systems across many

scientific disciplines.
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Chapter 2

TWO-TEMPERATURE HALL-MHD SIMULATIONS OF THE
HIT-SI DEVICE

Before exploring the intersection of machine learning and plasma physics, a chapter is

required to detail work done using more traditional numerical simulations. The study pre-

sented in this chapter has also been published as a paper in Kaptanoglu et al. [208] and begins

with a description of the HIT-SI experiment in order to illustrate why a two-temperature

Hall-MHD model is appropriate for this plasma device.

2.1 The HIT-SI experiment

HIT-SI was a laboratory plasma device at the University of Washington that formed and

sustained spheromak plasmas for the study of plasma self-organization and steady inductive

helicity injection [191]. It consisted of an axisymmetric flux conserver and two inductive

injectors (actuators) mounted on each end as illustrated in the top left panel of Fig. 2.1a.

A flux conserver is a volume bounded by a wall that, up to its resistive timescale, conserves

the magnetic helicity defined in Eq. (1.37). The wall is usually made of a material with high

conductivity. The HIT-SI flux conserver was constructed from 1/2” thick copper and the

plasma-facing surface was coated with a thin insulating layer so that J · n̂ = 0 and therefore

the injector operation was purely inductive. Magnetic coils on each injector, generating

helical fields linking through the flux conserver, were oscillated in phase at a frequency

finj with values between 10 − 70 kHz. The magnetic fields generated by the two injectors

were spatially and temporally 90◦ out of phase, resulting in approximately constant power

and magnetic helicity injection. The fields from these injectors provided the power and

magnetic helicity to both form and sustain a spheromak during experimental discharges,



23

(a)
(b)

Figure 2.1: (a) A cross section of the device shows the toroidal structure, the two magnetic
helicity injectors, the surface probes, and the diagnostic gap. Reproduced from Wrobel et
al. [447], with the permission of AIP Publishing. (b) Representative MHD equilibrium during
sustainment showing an axisymmetric spheromak (rainbow) surrounded by field lines tied to
the injector (gray).

with a quasi-steady-state period of roughly constant spheromak amplitude lasting . 1 ms.

The sustainment period of each experimental discharge, indicated by the vertical black lines,

is illustrated for a typical discharge in Fig. 2.2.

In HIT-SI, some of the characteristic time scales overlap, such as the toroidal Alfvén

time τA and the injector frequency finj. The magnetic topology is fundamentally 3D and

magnetic perturbation amplitudes are comparatively large (|δB|/|B| ≈ 10% in HIT-SI and

|δB|/|B| . 0.1% in typical tokamaks) [160]. Additional details of the experiment and its

operation can be found in references [191, 448, 435].
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Figure 2.2: Toroidal current (yellow) and total injector current (purple) waveforms for the
HIT-SI experiment, discharge 129499. The black vertical lines indicate the sustainment
regime when the spheromak has formed and is being sustained by the injectors.

Previous work on HIT-SI simulations started with a resistive single fluid MHD model [186]

followed by a model including Hall terms to capture some of the effects expected with the full

two-fluid system of separate ions and electrons [5]. The importance of different physical terms

in the MHD equations is interpreted from theoretical considerations [193] and the results of

experimental validation [186, 5, 303]. Both experimentally and theoretically, two-fluid effects

through the Hall terms have been shown to be important for spatial scales between the ion

and electron inertial scales [127]. In HIT-SI, the ion inertial scale di ≈ 8 cm is comparable

with experimental length scales, such as the diameter of an injector mouth dinj ≈ 14 cm,

and the characteristic magnetic scales of the spheromak λ−1
sph ≈ 10 cm and injectors λ−1

inj ≈

5 cm [189, 31]. Numerical models with the Hall terms significantly improve agreement with

HIT-SI measurements over the resistive MHD models [5], and validate well with many bulk

measurements of the experiment [303, 32]. Modeling the full injector geometry, especially

capturing the short-lived reconnection events in the injectors, led to improved agreement with
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experimental measurements [163]. Additionally, from measurements of HIT-SI [181] (and a

newer device called HIT-SI3 [120]) and theory [189, 191], ion temperatures are expected to

be significantly higher than electron temperatures. Therefore, distinguishing between the ion

and electron temperatures is a well-motivated change to the Hall-MHD equations, leading

to new dynamics in HIT-SI simulations.

In general, investigating a collection of models and geometries of varying complexities

facilitates new understanding of the plasma dynamics, as well as validation of the numerical

models and codes. Although validation with experimental data is important for quantitative

and predictive understanding of experimental results using simulations, it is not the primary

goal of this chapter. Rather, Chapter 2 is part of a systematic and sustained effort to inves-

tigate the complexity of the physical models, geometry, and boundary conditions required

to capture the important dynamical processes in this device. In particular, the aim of this

chapter is to elucidate the underlying physics through identification of important terms in

the dynamics.

As part of this work, the two-temperature Hall-MHD model in Eqs. (1.21) − (1.26) was

implemented into the 3D PSI-Tet finite-element code [163] for simulations of the HIT-SI

device. Subsequently, a number of parameter scans were performed, and a number of new

dynamical phenomena were investigated.

2.2 HIT-SI simulations with the NIMROD and PSI-Tet codes

In order to perform simulations, the closures need to be clarified for a two-temperature

model. For this study, an anisotropic Braginskii thermal conduction with temperature and

magnetic field dependencies [52] χ⊥,s and χ‖,s, Spitzer-like resistivity [406] η = η0/T
3
2
e , and

constant and isotropic viscosity ν = 550 m2/s are assumed. An approximate demagnetization

effect, which enforces χ⊥,s ≤ χ‖,s, is included in the thermal conduction coefficients because

there are locations, like reconnection regions inside the injectors, where the magnetic field

vanishes. The viscosity value used is approximately that obtained from Braginskii [52],

assuming plasma parameters late in the discharge. This value matches that which was used
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in prior studies. Previous HIT-SI simulations found that “while there are changes to the flow

profile between isotropic and anisotropic viscosity models, they tend to have little influence

on the bulk evolution of the plasma” [303]. The electrons are approximated in this model

to receive the entirety of the Ohmic heating, while only ions receive viscous heating. These

choices are well-motivated because the ratio of electron to ion Ohmic heat and the ratio of

ion to electron viscous heat are both approximately
√
mi/me. The heat exchange from ion-

electron collisions, Qcoll, is an approximation obtained from the NRL plasma formulary [184].

The electron inertia term, the last term on the RHS in Eq. (1.29), incorporates two-fluid

effects by introducing the electron inertial scale to the evolution equation and retaining the

whistler-wave dispersion cutoff at the electron cyclotron frequency, ω = ωce. Despite the

apparent physical motivation, this term should not strictly be included in the code at this

level of approximation because there are other effective two-fluid terms of the same order

that are omitted. The inclusion of this term is motivated instead because it helps to stabilize

the magnetic field evolution; in both the PSI-Tet and NIMROD numerical codes, there is

an enhancement factor for the electron inertia precisely for this reason. Enhanced electron

inertia is a common numerical trick in MHD codes. Since the electron mass is artificially

enhanced, high-frequency whistler waves are damped, reducing numerical stiffness in the

magnetic field evolution. Moreover, to leading order fmemeJ̇/ne
2 ≈ fmemeωinjJ/ne

2 ∝ ηfJ ,

with ηf interpretable as additional resistivity for currents changing at a fixed frequency.

In HIT-SI, for currents oscillating at the lowest frequency (14.5 kHz) used in the present

work, ηf is smaller than η by a factor of 2-3. At higher frequencies, the terms are of similar

magnitude. Fortunately, equilibrium and other slowly changing currents will see a smaller

effective ηf . Typically fme = 36.72 is used because this value was found in previous work

to be well-converged for simulations similar to those presented here [5, 304]. A convergence

study was also performed as part of this work, which showed no significant changes in the

range fme = 18.36 − 73.44. These and other relevant parameters are summarized in Table

2.1.
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Parameter Value [Units]
Injector Flux 0.5 [mWb]

Injector Current 8 [kA]
nwall 0.75 [1019 m−3]
Twall 3 [eV]
ν 550 [m2/s]
D 250 [m2/s]

η0 5.327× 10−4 [Ω m eV−
3
2 ]

mi/(fmeme) 100

Table 2.1: Fixed parameters for PSI-Tet and NIMROD frequency scan simulations.

2.2.1 PSI-Tet

PSI-Tet is a 3D high-order finite element code that supports multi-physics models on un-

structured tetrahedral grids. The grids can be generated directly from Computer-Aided

Design models and this discretization facilitates the accurate representation of complex 3D

geometries like the HIT-SI device. The approximate experimental boundary conditions for

HIT-SI are

B · n̂ = 0, J · n̂ = 0. (2.1)

B is the magnetic field, J is the current density, and n̂ is a unit normal vector to the wall.

The numerical implementation of these boundary conditions is enabled by the unique mixed

element discretization used by PSI-Tet. In PSI-Tet, the injector flux and voltage circuits in

HIT-SI are approximated by imposing a time-dependence for
∫
B ·dl on independent sets of

closed loops on each injector. This boundary condition fixes the current enclosed within these

loops as a function of time and the values are chosen to reproduce experimental waveforms.

The simulations initialize the magnetic field as a small Taylor state [31] of a few Amperes

of toroidal current; this is not strictly necessary, nor does it determine the direction of the

toroidal current after spheromak formation, but it tends to improve the initial numerics.

More details can be found in the original works [163, 160].
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For the remaining fields, PSI-Tet uses Dirichlet boundary conditions equal to the initial

condition for velocity, temperature, and density, with the values

uwall = 0, Ti,wall = Te,wall = 3 eV, nwall = 0.75× 1019 m−3, (2.2)

These choices are typical for past HIT-SI simulations, and were chosen based on validation

with experiment [186, 5, 304]. A more principled approach to these choices would require

the evolution of a neutral fluid to model the atomic processes such as ionization and recom-

bination, which are expected to be very important at the boundaries [370, 285]. This is a

subject of future work [411].

An implicit Crank-Nicolson time advance is used with a maximum time step of 40 ns,

determined to be suitable by convergence studies [160]. Typical time steps are 40 ns for low

frequency simulations and 10 ns for high frequency simulations. The number of grid cells

used in the PSI-Tet simulations is 103,887, corresponding to a uniform grid spacing of 2.8 cm

with third order basis functions. This produces an approximate resolution of 9 mm, which

resolves the electron inertial scale de ≈ 12 mm, although most of the electron dynamics

occurring at this scale are not included in Equations 1.21−1.26.

2.2.2 NIMROD

If the precise effects of the injector geometry are not important for a given study, consider-

able numerical efficiency can be gained by solving the evolution equations with algorithms

optimized for axisymmetric geometries. NIMROD is a versatile extended MHD code used

for simulating spheromaks [179, 5, 303, 304, 305] as well as many other axisymmetric or

quasi-axisymmetric plasma systems [220, 217]. NIMROD discretizes equations in cylindrical

coordinates (R, φ, Z) and the R-Z plane is composed of finite elements while the φ component

is expanded in a finite Fourier series. Instead of implementing the boundary condition J · n̂,

a thin layer of high resistivity with ηwall/ηplasma ≈ 105 is used to impede current flow into

the wall. To avoid numerical issues from a sharp jump in η, a matching boundary layer is
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added to the mesh so that the variation occurs within a single cell. NIMROD is restricted to

toroidally symmetric geometries, so the HIT-SI injectors are modeled as boundary conditions

on the flux conserver.

The magnetic field boundary condition approximates the action of the magnetic helicity

injectors through a combination of B · n̂ and E × n̂ conditions. The spatial profile of B · n̂

is generated through a Grad-Shafranov solution of the injector geometry and is detailed in

reference [5]. The injector current, which is used to define E×n̂, has the same spatial profile

of B · n̂ and differs by a scale factor and a phase delay in time. As in the experiment and

PSI-Tet simulations, the two magnetic helicity injectors are set to a relative phasing of 90◦.

The entire wall, including the injector “openings”, uses a constant and uniform Dirichlet

boundary condition for temperature and density with the values in Table 2.1. A minor

complication is that the two-temperature simulation at finj = 14.5 kHz (in Sec. 2.3) was

performed with Ti,wall = Te,wall = 1 eV because of numerical issues; this minor change

is justified further in Section 2.4.1 by showing that the dynamics are fairly insensitive to

the wall temperatures. More importantly, the Dirichlet temperature and density boundary

conditions for the injector may lead to significantly different dynamics than those observed

in PSI-Tet. These boundary conditions enforce a cold, uniform plasma across the injector

mouths. Parallel heat conduction then produces cold channels of plasma in the main volume

which are linked to the injectors. This is in direct contrast to PSI-Tet simulations which

observe highly dynamic plasma channels in the injectors which are much warmer than the

wall temperature. These NIMROD simulations can be made more dynamically similar to the

PSI-Tet simulations by adjusting the Dirichlet temperature and density boundary conditions

on the injector mouths, but this tends to be a heuristic procedure.

The velocity is zero at the boundary except for a constant inward flow at each injector

mouth to counter-act density holes that cause numerical issues. Without this inward flow,

before the spheromak has formed, a density hole often forms in the core of the device from

the establishment of increased temperature near the magnetic axis. This temperature pushes

particles outwards due to a lack of pressure confinement, creating a deep density hole in the
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core; during the formation event the density becomes so low that the Hall terms, propor-

tional to n−1, cause numerical instability. Regardless, inward flows are well-motivated by and

comparable in magnitude to large flows seen in PSI-Tet simulations [163, 32]. The spatial

profile of the normal velocity matches the absolute value of the normal magnetic field, and

the peak velocity ≈ 19.5 km/s is in approximate agreement with the flow velocity observed

on the experiment with ion doppler spectroscopy [181]. Like PSI-Tet, the NIMROD initial

conditions are the same as the boundary conditions for the temperatures, density, and veloc-

ity (velocity is initialized to zero everywhere except on the injector mouths), with an initial

Taylor state of a few Amperes.

The average cell size in the poloidal plane was 1.8 cm and used fourth order basis func-

tions. Eleven Fourier modes in the toroidal direction were used, corresponding to a toroidal

node spacing of approximately 8.3 cm at the mid-radius of the domain (27.5 cm at the out-

board edge). Grid resolution studies for both PSI-Tet [163, 160] and NIMROD [5, 304] have

shown convergence of results at these resolutions. Lastly, NIMROD solves the same system

of equations that PSI-Tet does, with the exception of a divergence cleaning term added to

the magnetic field evolution [405]. Before moving on to the results, terms in the power flows

are identified in order to disambiguate various physical effects.

2.2.3 Power flows

Significant differences in ion and electron temperatures can often be explained by examining

the heating and loss terms. The injector voltage circuit is responsible for most of the ex-

perimental power input, but in PSI-Tet only the current waveform of this circuit is known.

The consequence is that the total injected power cannot be calculated directly in PSI-Tet.

Instead, the total injector power is approximated from a power balance of the total time rate

of change of the total energy with the ion and electron heat fluxes to the wall through

Pinj +

∮
(hi + he) · n̂dS =

d

dt

∫ [
B2

2µ0

+
n(miu

2 +meu
2
e)

2
+
n(Ti + Te)

γ − 1

]
d3x. (2.3)
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The integration volume is the entire HIT-SI volume, and the integration surface is the entire

HIT-SI boundary, including the injectors. Individual thermal energy flow terms are also

tracked

∂

∂t

∫
n(Ti + Te)

γ − 1
d3x︸ ︷︷ ︸

thermal power

=

∮
(he + hi) · n̂dS︸ ︷︷ ︸
heat flux to wall

(2.4)

−
∫

(∇u)T : Πd3x︸ ︷︷ ︸
viscous heat

+

∫
ηJ2d3x︸ ︷︷ ︸

Ohmic heat

+
1

γ − 1

∫
(Ti + Te)D∇2nd3x︸ ︷︷ ︸
diffusive heat

− 1

γ − 1

∫ [
(Ti + Te)(u · ∇n+ γn∇ · u) +

(γ − 1)Te
ne

J · ∇n
]
d3x︸ ︷︷ ︸

density advection and compressive heat

− 1

γ − 1

∫ [
nu · (∇Ti +∇Te)−

1

e
J · ∇Te

]
d3x︸ ︷︷ ︸

temperature advection

.

Changes to the above relation from upwinding [54], applied to the density and temperature

evolution equations, are included and contribute negligible heating power. Unphysical heat

flow is introduced by the artificial diffusivity term, introduced for numerical stability, in

Eq. 1.21. This artificial heat flow accounts for approximately 5% of the total power flowing at

finj = 14.5 kHz and approximately 3% at finj = 68.5 kHz, a small but non-trivial contribution.

Now that the power flows have been decomposed, the variations of these quantities can be

used to explain dynamical changes in these new two-temperature simulations.

2.3 Injector frequency Scan

Driven nonlinear systems tend to exhibit resonances and reproduce harmonics or quasi-

harmonics of the driving frequency [215]; experimental campaigns and simulations of HIT-SI

with different injector frequencies provide understanding about these qualitative behavior

changes. Experimental trends in injector frequency indicate that higher frequency operations

tend to exhibit higher plasma impedance in the injectors, increased volume-averaged β,
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reduced chord-averaged density fluctuations from interferometry, and, to a lesser extent,

larger current gain G = Itor/Iinj . Previous work [303, 304, 32] with the single-temperature

models in NIMROD and PSI-Tet has indicated qualitative agreement with all of these trends

when the injector frequency is increased from 14.5 kHz to 68.5 kHz; the two-temperature

model facilitates further exploration and understanding of these qualitative trends. For the

remainder of Chapter 2, all volume-averaged quantities will be denoted like 〈β〉, as will

the chord-averaged density 〈n〉 which is used in place of the volume-averaged density. The

volume averages of the various plasma quantities and power flows use the entire plasma

volume, including the injectors. The toroidal current and current centroid are obtained from

averages over a number of surface magnetic probes and will be denoted Itor and (R,Z),

respectively.

Most of this analysis will be concerned with the plasma dynamics observed in these

simulations, but qualitative comparisons with experimental trends will also be made. It is

important to note that the simulations presented in this Sec. 2.3 use typical parameters for a

HIT-SI discharge at 68.5 kHz, i.e. at relatively low density and power. Furthermore, because

the injectors are operated with a 90◦ phase shift with respect to one another, the total power

injected in experimental HIT-SI approximately satisfies

Pinj = V1,injI1,inj + V2,injI2,inj = VinjIinj[cos2(φ) + sin2(φ)] = VinjIinj = ZinjI
2
inj ∝ finjI

2
inj, (2.5)

where Zinj is the plasma impedance in the injector and Zinj ∝ finj is justified later in Eq. 2.9.

These simulations keep the injector current and flux waveform amplitudes fixed, so that if

the same scaling exists in the simulations, the power injected increases linearly with finj.

In fact, it is shown in Section 2.3.3 that the two-temperature PSI-Tet simulations produce

injector power scaling with finj that is slightly super-linear. While the waveform amplitudes

are constant, the relative phases between the waveforms are changed to match the average

phases used for high performance HIT-SI experimental discharges at each frequency, and

this may also affect the injector impedance scaling with injector frequency; more details on
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the how the phases were chosen can be found in previous work [160].

2.3.1 Ion and electron temperatures

For low density or low temperature plasmas, the slow ion-electron collision rate τei can result

in separate temperatures for the two species on the timescales of interest. For the HIT-SI

experiment, which sustains plasmas for 1-2 milliseconds, the approximate thermalization

time τei ≈ 100− 200 µs > τinj for all the injector frequencies investigated here and τei � τinj

for high-frequency operation. This suggests that injector heating occurs faster than collisions

can equilibrate the species, leading to potentially substantial differences in electron and ion

temperatures. Therefore one expects that separate ion and electron temperature evolutions

are important for understanding the specific temperature profiles (affecting η and β), as well

as the flow of plasma energy and heat through the system.

The two-temperature model shows increasing differences between 〈Te〉 and 〈Ti〉 as the

frequency increases in Fig. 2.3. At 14.5 kHz 〈Te〉 ≈ 〈Ti〉. However, at 68.5 kHz 〈Ti〉 and

〈Te〉 match closely with the experimental measurements of Te ≈ 5 − 10 eV and Ti ≈ 20 −

30 eV [181, 447]. Thomson scattering measurements on the newer HIT-SI3 device at 14.5 kHz

also indicate electron temperatures of 5 − 10 eV [120], in excellent agreement with the

〈Te〉 calculated here. Volume-averaged electron temperature is fairly insensitive to injector

frequency, while 〈Ti〉 shows a strong and approximately linear scaling with injector frequency.

The mild increase for 〈Te〉 can be partially explained through increases in the Ohmic heating

and electron heat flux to the wall. Collisional heating with the ions is in the tens of kilowatts,

compared to other heat flows in the megawatts, and therefore plays essentially no role in the

electron heating. Ohmic heating and the total electron heat flux to the wall both increase

by a factor of three or four from low to high frequency, restraining volume-averaged electron

temperature to a modest increase at high frequency.

The larger volume-averaged ion temperatures at high frequency operation can be ex-

plained from the corresponding increased viscous heating through the following arguments.

This anomalous ion heating is the conversion of magnetic energy to ion thermal energy
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Figure 2.3: Summary of bulk metrics, comparing PSI-Tet and NIMROD single and two-
temperature models. Density illustrations represent chord-averaged density 〈n〉 obtained
from synthetic far-infrared interferometry. Magnitude of the toroidal current |Itor| and cur-
rent centroid (R,Z) are calculated as averages of the four poloidal surface arrays.
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through magnetic reconnection. Magnetic reconnection primarily converts the magnetic en-

ergy to ion thermal energy through shock or viscous heating of the reconnection outflow [332].

Work using a stochastic ion heating model for reconnection events indicates the fractional

energy transfer is proportional to the species mass, providing a possible explanation for the

hot ions and cold electrons [125]. Because most of this heating is lost through stochastic field

lines in HIT-SI simulations, the thermal energies for both species builds up until the trans-

port to the wall equals the rate of conversion from magnetic energy to thermal energies. The

increased temperatures at higher frequency operation are likely a consequence of increased

magnetic reconnection (and therefore increased viscous and Ohmic heating) at higher injector

frequencies, since field reversals in the injectors are happening more frequently.

A likely source of additional heating is through the compressive heating ∝ n(Te+Ti)∇·u.

Once the ions are warm, the compressive heat preferentially goes to the ions through the

linear dependence on temperature, and Fig. 2.4 indicates that the total compressional heat

∝ n(Te + Ti)∇ · u is comparable to viscous and Ohmic heating. This is a significant new

finding in these simulations, as viscous and Ohmic heating were originally assumed to be

the dominant heating effects in the device. Compression also tends to be very high in the

injectors during a field reversal. This is both because the plasma in the injectors tends to get

relatively hot (see, for instance, Fig. 2.5) and because velocity gradients become very large

during field reversals as plasma is accelerated from the walls to carry in oppositely directed

flux. This creates an outer shell of plasma with flux in one direction, which compresses an

inner channel of plasma flux in the opposite direction until it becomes unstable and global

reversal occurs through reconnection [160]. The early and large (larger than Ohmic for the

simulations with finj ≥ 36.5 kHz) viscous heating of the ions facilitates the compressive

heat to preferentially heat the ions even further. The temperature profiles are illustrated for

the two-temperature PSI-Tet simulation at high frequency operation by the 2D contours in

Fig. 2.5. The profiles show that the injectors contain hot channels of plasma and the spatial

profiles of Te and Ti are fairly similar.

To understand why the PSI-Tet two-temperature model exhibits larger 〈Te〉 than the
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single-temperature model at low frequency and smaller 〈Te〉 at high frequency, note that, at

low frequency, the Ohmic heating is greater than the viscous heating. The single-temperature

model shares the Ohmic heating with the ions, reducing the amount of heat to the electrons.

At high frequency, the viscous heating is shared between the electrons and ions, so that

the single-temperature model now overheats the electrons. Although the NIMROD two-

temperature model still produces slightly larger 〈Te〉 than the single temperature model

at high frequency, the trend with frequency is the same as the two-temperature PSI-Tet

simulations (the gap between 〈Te〉 in the single and two-temperature NIMROD simulations

has shrunk as the frequency increases). It is unclear why the transition has not yet happened

for the high-frequency NIMROD simulations. A possible explanation comes from the absence

of the injector volumes, where significant ion heating due to compression and reconnection

occurs in PSI-Tet.

2.3.2 Current centroid

The current centroid is an important quantity for modeling magnetic equilibria and under-

standing the magnetic topology in HIT-SI. The toroidal current Itor and current centroid

(R,Z) are calculated as averages of the results from each of the four poloidal surface probe

arrays in order to be consistent with the experimental analysis. The experimentally mea-

sured current centroid is taken as the weighted average of the poloidal field measurements

from each of the four poloidal surface magnetic probe arrays [448]

R =
1

4

4∑
k=1

∑16
i=1RikBθ,ik∑16
i=1Bθ,ik

, (2.6)

Z =
1

4

4∑
k=1

∑16
i=1 ZikBθ,ik∑16
i=1 Bθ,ik

, (2.7)

where the index k is summing over the four poloidal arrays and the index i is summing

over the 16 magnetic probes in each array. Experimental measurements have indicated an
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Figure 2.5: 2D contours of Ti and Te in two-temperature PSI-Tet simulations with finj = 68.5
kHz indicate hot injectors and similar spatial distributions for Ti and Te.

outward radial shift and vertical symmetrization of the current centroid at high frequency

in HIT-SI [435]. Previous work comparing single-temperature and constant-temperature

simulations did not find evidence of robust changes for different injector frequencies [32].

The current centroids computed using the two-temperature models are illustrated in Fig. 2.3.

Compared to their single-temperature counterparts, they tend to exhibit a small outward

radial shift. Both two-temperature models tend to produce vertical symmetrization of the

current centroid compared to single temperature models, although high-frequency PSI-Tet

simulations shift very little, or even reverse this trend. As before, there is no consistent

evidence of symmetrization or outward radial shift as the injector frequency increases.

An interesting finding is that the PSI-Tet models tend to see the vertical component of

the current centroid shifted upwards 2−4 cm from the midplane, although the error bars are

of a similar magnitude. The change in dynamics from the single to two-temperature PSI-Tet

model appears to reduce the upward shift of Z at low injector frequency, but has negligi-
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ble change at high frequency. The vertical shift observations in PSI-Tet appear to be the

consequence of an asymmetry between the amount of power input by the two injectors in PSI-

Tet [160]; injected power asymmetry is also observed experimentally. The current waveforms

for the flux circuit tend to be larger for the injector on the bottom of the machine to produce

the same flux in both circuits. This asymmetry depends in principle on the nonlinear plasma

dynamics inside of each injector, and it is unknown how the stronger injector is determined.

Experimental work suggests that the asymmetry is determined primarily by the toroidal

current direction through the injector-spheromak coupling [190] but the two-temperature

PSI-Tet simulations presented here with opposite toroidal current direction exhibit the same

injector asymmetry. In PSI-Tet simulations the bottom injector will tend to input more

power, and therefore perturb the system preferentially in the upwards direction. This is di-

rectly reflected in PSI-Tet by the vertical component of the current centroid. NIMROD only

produces a slight current centroid asymmetry with the single-temperature model, suggesting

that capturing the injector power asymmetry correctly may require modeling the dynamics

inside the injectors.

The vertical shift of the current centroid is observed to a small extent (≈ 1 cm) exper-

imentally [435]. The smaller experimental shift is likely because an increase in one of the

injector voltage waveforms tends to occur with a corresponding decrease in the same injec-

tor current waveform, leading to approximately equal power from each injector despite the

asymmetric waveforms. Dealing with this subtlety would require a more realistic model of

the experimental circuit. Nonetheless, this effect provides an additional metric for experi-

mental validation and an interesting direction for future experimental work, i.e. intentional

asymmetric operation of the injectors to investigate the current centroid dependence.

The experimentally observed shift in the radial component of the current centroid has

been postulated elsewhere as a Shafranov shift from confined plasma pressure in the interior

of the device [435]. However, the simulations presented in this frequency scan do not exhibit

evidence of closed flux surfaces or confined pressure. Thus, not surprisingly, the simulations

indicate that the current centroid does not consistently shift outwards with higher frequency,



40

even with significantly larger 〈β〉. The volume-averaged plasma β is pictured in Fig. 2.4 and

defined here through the plasma pressure p = n(Ti + Te) as

〈β〉 =

∫
(p− pwall)d

3x∫
B2

2µ0
d3x

. (2.8)

The lack of an outward shift of R as the frequency changes is consistent with single-

temperature PSI-Tet observations in previous work [32]. The observed outward shift of

R in the two-temperature PSI-Tet simulations is primarily due to changes in the spatial

distribution of Te, leading to changes in the parallel current distribution through η, and thus

alter the force-free component of the equilibrium. Evidence for this claim is provided from

similar simulations in Sec. 2.4.1.

The two-temperature PSI-Tet observations for 〈β〉 in Fig. 2.4 indicate a large increase

from 14.5 kHz to 36.5 kHz (perhaps corresponding to a transition from lower to higher

average 〈β〉 as has been demonstrated elsewhere [304]) and diminishing increases from 36.5

kHz to higher frequencies.

2.3.3 Injector impedance

Experimental data and imposed dynamo current drive [193, 192] predict that the injector

impedance approximately satisfies

Zinj = C1µ0R0

(
1

8πer3
0

λinj

λsph

Itor

n
+ 2πC2finj

)
. (2.9)

For NIMROD and PSI-Tet simulations the second term on the right-hand side is domi-

nant [304], and so this can be further approximated to

Zinj ≈ 2πC3R0µ0finj. (2.10)
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R0 = 0.5 m and r0 = 0.25 m are the major and minor radius of the HIT-SI device respectively

and C1, C2, and C3 = C1C2 are fitting parameters. The Zinj scaling with the frequency

(Eq. 2.10) for two-temperature PSI-Tet simulations is indicated in Fig. 2.6 and indicates

an average C3 ≈ 0.23, in rough agreement with the two-temperature NIMROD simulations

with C3 ≈ 0.125. A lower impedance in NIMROD is reasonable, as the injector regions are

not included. This means that the power used to generate magnetic fields in the injector

volumes are not captured in the NIMROD simulations.

Fig. 2.6 indicates that this relationship is slightly super-linear in two-temperature PSI-Tet

simulations but only linear in two-temperature NIMROD simulations (note that the 14 kHz

NIMROD simulation is somewhat of an outlier, perhaps because this is the simulation with

1 eV walls, so it has been omitted in the average C3). The physical cause of the additional

scaling in PSI-Tet does not appear to correlate with average |J |/n as suggested by the

theory of imposed dynamo current drive. Due to the continuous evolution of quantities and

their profiles in these simulations as the injector frequency changes, an alternative physical

correlation could not be found.

A natural extension of this analysis is an examination of the scaling of the current gain

G = Itor/Iinj. Helicity balance models [336, 447] indicate that for fixed injector waveforms

and steady-state operation

G ∝
√
τL/RZinj ∝

√
T

3
2
e finj, (2.11)

where the second scaling follows from Eq. (2.10). However, these simulations are not at

steady-state operation at t = 0.6 ms, as can be seen straightforwardly in the continued

growth of the toroidal currents in Fig. 2.3. Further work should examine the scaling of gain

and injector impedance at steady-state with the two-temperature models.

2.3.4 Spheromak formation

The nonlinear relaxation event, the interval during which the plasma self-organizes into a

spheromak plasma, has been analyzed extensively. However, the exact timing of this event,
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Figure 2.6: Left: Eq. 2.10 (dashed black lines) captures the first order time evolution of
Zinj(t) (color lines) for two-temperature PSI-Tet simulations. Middle: Equivalent to the
left illustration for two-temperature NIMROD simulations. Bottom: Best fit values for C3,
corresponding to the black lines from above, indicate averaged C3 ≈ 0.23 and C3 ≈ 0.125 for
two-temperature PSI-Tet and NIMROD simulations, respectively.

and the process by which the resulting toroidal current direction is determined, are not

well-understood experimentally or theoretically.

Interestingly, at high injector frequency, NIMROD [304] and PSI-Tet single and two-

temperature simulations all indicate the presence of a structure of two oppositely oriented flux

tubes during spheromak formation. This structure also briefly appears during the formation

event for low frequency HIT-SI simulations using the two-temperature PSI-Tet model. The

structure is visualized using Bz at the Z = 0 midplane for both low and high frequency

two-temperature PSI-Tet simulations in Fig. 2.7. A 3D isosurface of J ·B/|B|2 = 13 (an

important quantity for spheromaks and Taylor states [31]) in Fig. 2.8 indicates that there

are paths of constant J · B/|B|2 which connect the two injectors, and suggest current

loop formation [327] in the center of the device. These paths are reminiscent of the flux

tubes, suggesting that the tubes may be generated by the magnetic field parallel to the

current in these 3D pathways. Once the formation phase of the discharge gives way to

the sustainment phase, these flux tubes are more difficult to identify, as the leading order

magnetic field dependence now comes from the self-organized spheromak in the center of the

device. However, work with DMD in Chapter 4 similarly identifies previously undiscovered
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large-scale magnetic structures with nφ = 2 toroidal Fourier structure, oscillating at 2finj

during sustainment [207].

This observation is notable because the HIT-SI experiment tends to produce both nega-

tive and positive toroidal discharges and this parity choice appears to depend on a number

of factors, including the phases of the injector waveforms during the time of formation [304].

Previous studies have found that fixed parameter discharges operating a single injector al-

ways form and sustain spheromaks with toroidal current parity determined by the sign of the

injected helicity [182, 118] but more detailed explanations for this behavior have been elusive.

Moreover, HIT-SI simulations in PSI-Tet with these fixed parameters always produce neg-

ative toroidal current; equivalent simulations for the HIT-SI3 device, which has a different

injector geometry, produce positive toroidal currents. This parity can often be switched in

the simulations by changing the relative phases of the injector waveforms. Different param-

eter regimes indicate different parity preferences.

In the simulations presented here, at the time of spheromak formation, the two closest

flux tubes merge in the center, while the other two spread out and merge along the edge.

Which flux tubes merge in the center determines the direction of the toroidal current. All

of these observations are consistent with the interpretation of each injector driving a flux

tube pair, with parity fixed by the sign of helicity. However, this appears to be determined

more by the relative phases of the injectors, rather than the number of injectors, since HIT-

SI3 simulations also often exhibit this nφ = 2 activity [349]. During operations with both

injectors, a quasi-random process then selects which flux tube pair merges and determines

the sign of toroidal current. This quasi-random process likely depends on a number of

nonlinearities, as different parameter spaces indicate different timing and sign of the toroidal

current. Future work could investigate how these formation structures change with different

injector phasing.
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(a) finj = 14.5 kHz (b) finj = 68.5 kHz

Figure 2.7: Two-temperature PSI-Tet simulations: Contours of Bz with limits ±100 Gauss
and vector plots of B illustrated at time snapshots directly before spheromak formation, in
the Z = 0 midplane. The flux tubes form a nφ = 2 toroidal Fourier structure, and oscillate
at approximately 2finj. During spheromak formation, the flux tubes merge to determine the
direction of the toroidal current.

2.4 PSI-Tet Parameter scans

Investigating the parameter space of the magnetohydrodynamic models presented here is very

important; fixed numerical terms require convergence studies to understand their impact on

simulations and physical parameters should be scanned in order to understand the possible

range of results from the experimental uncertainty in the measured values.

With the two-temperature PSI-Tet model, a number of parameter scans were performed

to investigate the plasma dependence on these values. The wall temperature, wall density,

and artificial diffusivity scans are performed only for finj = 14.5 kHz. With the exception of

the wall density scan, which is performed at high injector power to investigate the possibility

of closed flux formation, the simulations in this section use the parameters in Table 2.1 (al-

though the parameter being scanned is changing from the table value). Previous NIMROD

work with HIT-SI simulations has scanned the viscosity and indicated only small changes

from the value of the viscosity and choice of isotropic or anisotropic viscosity [303]. How-

ever, scans performed in NIMROD may not see dependencies on the injector geometry and

associated field reversals. Future work in PSI-Tet should explore this possibility.
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Figure 2.8: A 3D isosurface of J · B/|B|2 = 13 at finj = 14.5 kHz, before spheromak
formation (t = 25 µs), indicates paths connecting opposite injector mouths and suggests the
formation of a current loop.
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Figure 2.9: Time evolution of important quantities for the wall temperature scan of two-
temperature HIT-SI simulations with finj = 14.5 kHz. 〈Ti〉 and 〈Te〉 are in solid and dashed
lines, respectively.

2.4.1 Wall temperature

The exact temperature boundary condition is unknown on the HIT-SI experiment. More

sophisticated first-principles modeling of the temperature boundary condition would neces-

sitate the evolution of a neutral fluid, as plasma-wall interactions involve recombination

and other atomic processes which may strongly alter the density and temperature near the

boundaries [411]. However, scanning the wall temperature provides understanding about

how the internal plasma dynamics are affected and provides a sense of which value best

validates with experimental observations.

Three different wall temperatures Ti,wall = Te,wall = 1, 3, and 10 eV, were investigated.

The only changes of any significance are shown in Fig. 2.9 and indicate that as the wall

temperature is increased, a large inward shift of the current centroid occurs. The changes

from 1 to 3 eV walls are particularly small, justifying the comparison between 1 eV and 3 eV

wall temperature simulations in Sec. 2.3. In Fig. 2.10, time-averaged spatial profiles of the

electron temperature and Jy are compared between the 1 eV and 10 eV cases. It appears that

changes to the spatial distributions in Te primarily lead to changes in the parallel current

distribution through η. This likely produces a modified force-free part of the equilibrium. In

contrast, J⊥ (back to ⊥ meaning perpendicular to the local magnetic field direction) is quite
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similar as the wall temperature changes, as one might expect of a plasma simulation without

significant indication of confined pressure. Therefore, the current distribution changes are

posited to be responsible for the inward shift of the current centroid. The shift is inward

because η decreases rapidly as Te,wall increases, facilitating stronger parallel current flows.

2.4.2 Wall density

Experimentally, HIT-SI discharges tend to reach higher current gains during low-density

discharges [304, 181]. To investigate the density dependence in simulations, wall densities

n = 1019, 2.58 × 1019, and 5.16 × 1019 m−3 are scanned at finj = 14.5 kHz. To better

approximate experimental conditions, injector current and flux waveform amplitudes are

increased by a factor of 2.6 as compared to the other 14.5 kHz simulations shown in previous

sections, leading to higher input powers of 4− 8 MW. This is comparable with the low end

of experimental discharges at low frequency, which typically input 5 − 15 MW of injector

power.

Fig. 2.11 indicates that the toroidal current is strongly dependent on the density. At low

density, 〈Ti〉 exceeds 50 eV, and toroidal current is above 100 kA and growing. Despite large

gains in the temperature, 〈β〉 decreases, indicating the magnetic field strength has increased

significantly faster than the pressure. The lowest density simulation 〈β〉 falls to near the

Mercier limit for the HIT-SI flux conserver [288, 282]. The large magnetic field strength, the

spheromak gain of G > 5, and increased fluctuations on the average temperature evolution

in Fig. 2.11 all indicate possible closed flux activity. Previous work found transient closed

flux events from viscous effects but this occurred only for magnetic Prandtl number Prm =

µ0ν/η � 100. In contrast, this work has Prm an order of magnitude smaller and exhibits

significantly larger and more sustained closed flux periods. A Poincaré plot in Fig. 2.12

for B illustrates the presence of closed flux, and closed flux regions lasting 50 − 100 µs, or

1 − 2 injector periods can be seen in a video available at doi.org/10.1063/5.0006311.1.

This video illuminates considerable variation in the closed flux surfaces; the flux surfaces

vary from symmetric states to highly asymmetric states exhibiting complex magnetic island

doi.org/10.1063/5.0006311.1
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Figure 2.10: Time-averaged Te and Jy on a toroidal slice for Twall = 1 eV, 10 eV in two-
temperature PSI-Tet simulations at finj = 14.5 kHz.
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n = 1019 m-3 n = 2.08 1019 m-3× n = 5.16 1019 m-3×
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Viscous Heating (MW)

Compressive Heating (MW)

Figure 2.11: Time evolution of important quantities for the wall density scan of two-
temperature PSI-Tet simulations with finj = 14.5 kHz. 〈Ti〉 and 〈Te〉 are in solid and dashed
lines, respectively.

structures.

The large increase in viscous heating (and therefore ion temperature) at low density can

be mostly accounted for by the corresponding large increase in injector power. However, the

simulation with n = 2.58×1019 m−3 actually produces a slight decrease in the injector power

compared to when n = 5.16× 1019 m−3. A similar trend is seen in the compressive heating,

although it exhibits a complicated temporal dependence not observed in any other of the

simulations in Chapter 2. All of these observations suggest a threshold at a low enough

density and high enough input power where the overall performance of the device increases

sharply. An experimental study at 36.5 kHz operation did not find evidence of substantial

toroidal current increases with low density deuterium [182], although the total input powers

were less than 4 MW for all discharges examined. The record for experimental HIT-SI gain

was G = 3.9, but this high frequency discharge also had only a few MW of input power [435],
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Figure 2.12: Poincaré plot of B illustrates closed flux surfaces with lifetimes 50− 100 µs in
a low density, high power, two-temperature PSI-Tet simulation at finj = 14.5 kHz. Points in
blue approximately indicate the closed field lines. Video available at doi.org/10.1063/5.

0006311.1.

doi.org/10.1063/5.0006311.1
doi.org/10.1063/5.0006311.1
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so the G > 5 regime has not been explored experimentally. Therefore, these observations

at low density and high input power may indicate a route toward optimizing for higher

performance experimental discharges. One complication in this route is that there are often

large radiative losses in HIT-SI discharges, which are not modeled in the simulation. These

losses may prevent the plasma from reaching the requisite viscous, Ohmic, and compressive

heating necessary for this higher performance regime. These findings at low density, low

frequency, and high power operation merit future work on the density boundary conditions

and profiles used for HIT-SI simulations.

2.4.3 Particle diffusivity

From the previous analysis, the sensitivity of the spheromak performance to the density sug-

gests that artificial particle diffusivity may change the dynamics considerably. Unfortunately,

the artificial particle diffusivity in the continuity equation cannot be completed removed be-

cause it is found empirically to be necessary for the numerical stability of the Hall-MHD

model; it is tolerable if it can be converged down to a small value where it has negligible

effects on the simulation. However, previous work [304] only managed to reduce this value

to approximately D = 250 m2/s. Here successful runs are reported down to D = 50 m2/s in

PSI-Tet, which have been reproduced in NIMROD using additional hyper-diffusivity. These

simulations are also compared with a run with D = 1000 m2/s to understand the physical

effects of this stabilizing term to regimes used in prior work [303]. This work was unable to

reduce this value until the plasma dynamics are completely insensitive to it, but this compar-

ison provides understanding about how diffusion affects the dynamics in these simulations.

The quantities which indicated significant changes are summarized in Fig. 2.13.

In PSI-Tet and NIMROD this term is needed to avoid overshoot with grid-scale sharp

features, generally near the wall or reconnecting regions. The two-temperature PSI-Tet

simulations presented here have 〈n〉 which only mildly varies from D = 1000 m2/s →

250 m2/s but is significantly lower at D = 50 m2/s. This reduction in chord-averaged

density produces an overall increase in performance (higher toroidal current and average
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Pinj (MW)  (%)⟨β⟩ ⟨δn⟩/⟨n⟩

D = 1000 m /s2 D = 250 m /s2 D = 50 m /s2

Figure 2.13: Time evolution of important quantities for the artificial diffusivity scan of two-
temperature PSI-Tet simulations with finj = 14.5 kHz. 〈Ti〉 and 〈Te〉 are in solid and dashed
lines, respectively.

temperatures) consistent with the wall density scan. The volume-averaged temperatures

increase significantly, and 〈Ti〉 > 〈Te〉 for D = 50 m2/s. Relatively unchanged thermal

pressure, with significantly larger magnetic pressure at low diffusivity, leads to reduced 〈β〉 ≈

10%.

Experimental interferometry exhibits large and rapid oscillations which are considerably

larger than those observed in previous work or in this analysis. Artificial diffusivity in

the simulations has been postulated as a possible explanation for this discrepancy. The

density fluctuations 〈δn〉 shown on the raw density signal in Fig. 2.13 grow approximately

proportionally as the diffusivity is decreased, and the relative density fluctuations 〈δn〉/〈n〉

also increase significantly. Additionally, Fig. 2.14 indicates that in the low diffusivity case,

there can be spatial variations in the density of almost two orders of magnitude. These large

gradients in the density can lead to numerical instability. Since both absolute and relative

density fluctuations increase as D decreases, it appears likely that further convergence of
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Figure 2.14: Comparison of the 2D spatial density profiles for D = 50 m2/s and D = 1000
m2/s in two-temperature PSI-Tet simulations at finj = 14.5 kHz. The contours indicate that
pockets of low density form as D decreases. Contours also show significantly higher density
due to compression in the injector regions.

D → 0 will validate better with the large experimental oscillations. Another possibility is

that matching the experimental density fluctuation size will require a density profile in the

injectors that is a more faithful representation of the experimental fueling. Further progress

will require careful reproduction of the experimental waveforms and a direct model of the

experimental circuit.

2.5 Conclusions regarding two-temperature HIT-SI simulations

A two-temperature model was implemented in PSI-Tet and provides new insights into the

plasma dynamics in HIT-SI simulation and experiment. Both the PSI-Tet and NIMROD

two-temperature models differ from the single-temperature models through higher volume-

averaged ion temperature, lower chord-averaged density, and, for the most part, axial sym-
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metrization of the current centroid. Ion and electron temperatures are now in qualitative

agreement with ion Doppler spectroscopy and initial Thomson scattering measurements. It

was found that large compressive heating from the injector dynamics plays a significant role

in the overall plasma evolution. This new model further indicates injector impedance and

volume-averaged temperatures scale approximately linearly with injector frequency.

Parameter scans in the Dirichlet boundary condition for temperature and density, along

with simulations exploring the artificial diffusivity, lead to new physical insights into the

plasma dynamics in the HIT-SI device. At higher wall temperature, significant changes

to the spatial distributions of Te and J lead to an inward shift of the current centroid.

Importantly, the plasma dynamics exhibit considerable dependence on the plasma density.

Performance improves with higher volume-averaged temperatures, larger toroidal current,

reduced oscillations of the current centroid position, and reduced heat flux to the wall.

The low density, low frequency, high power simulation indicates a sharp rise in injector

power, suggesting a sudden change in the dynamics towards a higher performance regime.

These simulations motivate further experimental and numerical investigation of low density

parameter regimes.

Reductions in the artificial diffusivity produce significant decreases in the chord-averaged

density in the device, leading to higher temperatures and toroidal currents. The absolute and

relative density fluctuations increase as D decreases, improving the qualitative agreement

with experiment. Further reduction in the artificial diffusivity in PSI-Tet may potentially

lead to numerical instability near these sharp density gradients, although these reductions

have already been achieved by using a hyper-diffusivity term Dh∇4n. Hyper-diffusivity can

provide a larger ratio between smoothing at the grid scale and the global scale and has been

successfully applied to NIMROD simulations. The observations here strongly support the

claim that variations in density produce a strong impact on the dynamics.

The dynamics of the HIT-SI device have been investigated with a two-temperature Hall-

MHD model. A number of simulation parameters were varied, and qualitative experimental

validation improved. Future work should perform detailed validation with the experiment
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with the new two-temperature model, as has been done with previous models [161]. Towards

this goal, a circuit model [179] of the injectors has recently been implemented into PSI-Tet so

that injector drive can be captured more completely by the simulation [162]. This is expected

to be important for experimental validation because the reconnection heating, propagated

through the viscous heating, depends strongly on the phase between the injector waveforms

when the injector reverses direction. The primary reversal phase was found in previous

work [160] to last only a few µs, consistent with the Sweet-Parker [413, 343] reconnection

timescale. Further physical understanding and improved validation with the experiment

could also be obtained from an implementation of a more realistic closure for heat transport

and anisotropic viscosity.

Finally, there is a concern that the results here are specific for the HIT-SI device, and

do not generalize straightforwardly to the newer HIT-SI3 or HIT-SIU devices (these newer

devices differ primarily in the number and operation of the injectors). Fortunately, recent

simulations [349] of HIT-SI3 and HIT-SIU [33] with single and two-temperature Hall-MHD

models in NIMROD and PSI-Tet appear fairly similar in scaling and dynamics to the HIT-SI

simulations performed and illustrated here. Two-temperature simulations in NIMROD also

significantly improve agreement with experimental data coming from both the HIT-SI and

HIT-SI3 devices.
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Chapter 3

GALERKIN MODELS FOR PLASMAS

To introduce the intersection of machine learning and plasma physics, it is natural to

begin exploring analytic reduced-order models that can be derived from fluid or magnetohy-

drodynamic models. Many dynamical systems can be approximated by a system of coupled

PDEs, or in the space-independent case, a system of ODEs. The scientific techniques to

compute the numerical solutions, stability, and other analytic properties of these equations

are extremely mature. Still, many of these dynamical systems exhibit behavior that is not

fully understood, and the governing PDEs may be too complex to compute efficiently. For

instance, realistic 3D gyrokinetic simulations in plasma physics can take days or months

to compute [51]. In order to address such systems, scientists often use extra physical or

heuristic assumptions to further reduce the complexity or dimensionality of the governing

equations. The resulting ROMs can be used to efficiently compute approximations to the

original dynamics, potentially facilitating parameter scans, physical understanding, and real-

time control strategies.

Projection-based model reduction is a common approach for generating such models; a

high-dimensional system, such as a spatially discretized set of PDEs, is projected onto a low-

dimensional basis of modes [320, 321, 78, 79, 34, 374, 414, 415]. This “Galerkin projection”

leads to a computationally efficient system of ODEs that describes how the mode amplitudes

evolve in time [177]. However, these models can sometimes suffer from stability issues,

causing solutions to diverge in finite-time.

A common class of projection-based ROMs are those derived from the proper orthogonal

projection. POD-Galerkin ROMs have been increasingly used in the fluid dynamics field for

the last thirty years and are well-understood, simple to compute, and often extend straight-



57

forwardly to a number of variations and improvements. POD-Galerkin models are far less

common in plasma physics, and this may be because even a “simple” plasma model like

single-fluid MHD is still significantly more complicated than the compressible Navier-Stokes

equations. However, Galerkin and discontinuous Galerkin finite-element methods are often

used to numerically solve the MHD or 5-moment model in plasma physics [263]. Although

similar in flavor, POD-Galerkin models are typically low-dimensional models for the global

solution of a fluid or plasma flow, while the discontinuous Galerkin finite-element method

is a scheme for numerical discretization and solution of a system of PDEs in a traditional

simulation code. While this global property of most POD-Galerkin models facilitates very

large reductions in the system dimension (and therefore big computational efficiency gains),

it is also this drastic reduction that casts doubt about the feasibility of POD-Galerkin models

to adequately capture the fluid or plasma dynamics of experimental interest. This tradeoff

between model efficiency and fidelity varies depending on the experimental goal and the

system complexity, but despite these complications, POD-Galerkin models continue to be a

valuable tool in the field of fluid mechanics. The work presented in this chapter has also

been published as a paper in Kaptanoglu et al. [211].

3.1 Projection-based reduced-order models

Here, a brief description is provided to detail the projection-based reduction of a system of

partial differential equations into a lower-dimensional ROM. In modern scientific computing,

a set of governing partial differential equations is typically discretized into a high-dimensional

system of coupled ordinary differential equations. Although not necessary for projection-

based model reduction, this chapter explicitly considers dynamics with linear plus quadratic

structure, as are found in many fluid and plasma systems:

q̇ = C0 +L0q +Q0(q). (3.1)
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Here it is assumed that the PDE has already been discretized for numerical computation, re-

sulting in a coupled system of N differential equations. The state of the system q(x, t) ∈ RN

is a high-dimensional vector that represents the fluid velocity or other set of spatiotemporal

fields, for example sampled on a high-resolution spatial grid. Thus, C0, L0, and Q0 are typi-

cally high-dimensional operators used to perform a numerical simulation. The zero subscript

distinguishes these operators from the Galerkin coefficients defined below in Eq. (3.12).

The goal of a projection-based ROM is to transform this high-dimensional system into a

lower-dimensional system of size r � N that captures the essential dynamics. One way to

reduce the set of governing equations to a set of ODEs is by decomposition into a desired

low-dimensional basis {χi(x)} in a process commonly referred to as Galerkin expansion:

q(x, t) = q(x) +
r∑
i=1

ai(t)χi(x). (3.2)

Here, q(x) is the mean field, χi(x) are spatial modes, and ai(t) describe how the amplitude

of these modes vary in time. The POD [177, 63] is frequently used to obtain the basis, since

the modes χi(x) are orthogonal and ordered by maximal energy content. The governing

equations are then Galerkin projected onto the basis {χi(x)} by substituting Eq. (3.2) into

the PDE in Eq. (3.1) and using inner products to remove the spatial dependence. Orthogonal

projection onto POD modes is the simplest and most common procedure, resulting in POD-

Galerkin models, although Petrov-Galerkin projection [78, 79] improves model performance

in some cases. Fourier-Galerkin models, also known in the MHD turbulence community

as “shell models” [75, 244], are common and useful in the fluid and plasma physics fields

but, as discussed further in Sec. 3.3.1, tend to be less practical as system ROMs. Now

that the formation of projection-based ROMs has been discussed, the proper orthogonal

decomposition will be reviewed.
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3.2 Proper Orthogonal decomposition

The POD is already used extensively for interpreting plasma physics data across a range of

parameter regimes [113, 246, 132, 432, 161], but some formalism is required to effectively use

it for modeling and forecasting. Note that the POD is more commonly called the biorthog-

onal decomposition (abbreviated BD or BOD) in plasma physics. For POD, a set of point

measurements at time tk are arranged in a vector qk ∈ RN , called a snapshot, where the

dimension N is now the product of the number of spatial locations and the number of vari-

ables measured at each point. For instance, magnetic field data could have been obtained

from N/3 magnetic probes that measure the magnetic field components at a fixed location

and sampling rate. Now assuming that the data is sampled at some times t1, t2, ..., tM ,

arranged in a matrix X ∈ RN×M , and the average in time q is subtracted off. The singular

value decomposition (SVD) provides a low-rank approximation

X =

time
−−−−−−−−−−−−−−−−−−−−−−−→
q1(t1) q1(t2) · · · q1(tM)

q2(t1) q2(t2) · · · q2(tM)
...

...
. . .

...

qD(t1) qD(t2) · · · qN(tM)



y

state

= UΣV †, (3.3)

where U ∈ RN×N and V ∈ RM×M are unitary matrices, and Σ ∈ RN×M is a diagonal

matrix containing non-negative and decreasing entries sjj called the singular values of X.

V † denotes the complex-conjugate transpose of V . The singular values indicate the relative

importance of the corresponding columns of U and V for describing the spatiotemporal

structure of X.

It is often possible to discard small values of Σ, resulting in a truncated matrix Σr ∈ Rr×r.
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With the first r � min(N,M) columns of U and V , denoted Ur and Vr,

X ≈ UrΣrV
†
r . (3.4)

The truncation rank r is typically chosen to balance accuracy and complexity [63]. The

computational complexity of the SVD is O(NM2 + M3) [141], although there are random-

ized singular value decompositions [128, 252, 445] for very large problems that can be as

fast as O(NM log(r)). Therefore, even for r � 1, the SVD typically produces significant

computational speedup over codes which evolve the full spatiotemporal dynamics. The com-

putational speed [141, 445] of the SVD also enables online computations to update a model

for real-time control.

To proceed, a well-defined SVD requires that the measurements in X have the same

physical dimensions. With a dimensionalized measurement vector q, the matrix X†X sat-

isfies

X†X ≈ 〈q(tk), q(tm)〉, k,m ∈ {1, 2, ...,M}. (3.5)

The equality is not exact because the inner product (an integral) is approximated by the

discrete sum from the matrix product of X†X. The temporal SVD modes, or chronos, aj

are the columns of Vr. The spatial modes, or topos, χ form the columns of Ur. Finally,

q(xi, tk) ≈ q(xi) +
r∑
j=1

aj(tk)χj(xi). (3.6)

Any normalization of the aj(tk) and the singular values has been absorbed into the definition

of χj(xi). By construction 〈χi,χj〉 ∝ δij. Note that, in principle, one can expand q in any

set of modes, although orthonormal modes are preferred because this property facilitates

the analysis below. Non-orthogonal modes are also suitable, but introduce a complication

in the form of a mass matrix [367]. The advantage of the POD basis is that the modes
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are ordered by energy content; a truncation of the system still captures a majority of the

dynamics. With an expansion of the spatiotemporal state vector q in the POD basis, one can

substitute this expansion into an analytic plasma model such as Hall-MHD and attempt to

produce a POD-Galerkin model. To illustrate the POD expansion on a set of complex data,

the POD modes from the velocity and magnetic field (coming from a 3D MHD simulation of

the HIT-SI device) are shown in Fig. 3.1. The temporal modes consist primarily of harmonics

of the injector frequency, and the spatial modes, visualized in 2D on the Z = 0 midplane of

the device, exhibit interesting symmetries.

3.3 POD-Galerkin models

Traditional use of the POD on the MHD fields (velocity, magnetic, and temperature) would

either require separate decompositions for u, B, and T , or an arbitrary choice of dimen-

sionalization. This is not an ideal strategy because separate decompositions of the fields

obfuscates the interpretability and increases the complexity of a low-dimensional model, and

choosing the units of the combined matrix of measurement data can have a significant impact

on the performance and energy spectrum of the resulting POD basis. Inspired by the inner

product defined for compressible fluids [373], an inner product for MHD is defined through

the following quantities

q(x, t) =


Bu

B

BT

 , Bu =
√
ρµ0u, BT =

√
4ρµ0T

mi(γ − 1)
. (3.7)

The total plasma energy is now related to the inner product 〈q, q〉 through

W =
1

2µ0

〈q, q〉 =

∫ (
1

2
ρu2 +

B2

2µ0

+
p

γ − 1

)
d3x. (3.8)
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(a) (b)

(c)

Figure 3.1: The first seven POD modes for a 3D isothermal Hall-MHD simulation of the HIT-
SI device detailed in Sec. 2.1. The mean-flow-subtracted chronos indicate that the primary
dynamics are forcing at the driving injector frequency and its harmonics; (a) Mode pair
trajectories evolved in time and the corresponding singular values; (b) 3D spatial modes in
the Z = 0 midplane illustrate a complicated mix of length scales; (c) Normalized temporal
modes and corresponding Fourier transforms exhibit harmonics of the driving frequency,
labeled 1-5.
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Normalizing the MHD fields to magnetic field units produces a natural interpretation of

inner products of the vector q as the total plasma energy. This formulation is also useful

because reduced order models built for q can be constrained by conservation of energy via

Eq. (3.8), as is illustrated in detail in Section 3.4. A separate POD of each of the MHD

fields would lead to three sets of POD modes with independent time dynamics and mixed

orthogonality properties. In contrast, the approach using Eq. (3.7) captures all the fields

simultaneously, resulting in a single set of modes ai(t) in Eq. (3.6). Notably, the density is not

included in q because it significantly complicates the definition of a suitable inner product

and the Galerkin model derived below. This definition of q is still a suitable expansion for

incompressible flows or flows for which the density varies slowly in time compared to the

timescales associated with the Galerkin model.

With the expansion of the fields in a low-dimensional basis in Eq. (3.6), one can project

the Hall-MHD equations onto these POD modes in order to obtain a POD-Galerkin model.

Hall-MHD, assuming Te = Ti = T and the definitions in Eq. (3.7), can be written:

ρ̇=−∇·

(√
ρ

µ0

Bu

)
, (3.9)

Ḃ=∇×

[
1
√
ρµ0

(
Bu×B−di((∇×B)×B)

)]
+η0ρ

3
2B−3

T ∇
2B+

di√
ρµ0

(γ−1)BT∇BT×
∇ρ
2ρ
,

Ḃu=−
1
√
ρµ0

[
1

2
Bu∇·Bu+Bu·∇Bu−

1

4ρ
Bu(∇ρ·Bu)−(∇×B)×B+

(γ−1)B2
T

2

∇ρ
ρ
−(γ−1)BT∇BT

]

+ν

[
∇2Bu−

∇2ρ

2ρ
Bu+

3Bu

4ρ2
(∇ρ)2+

1

ρ
(∇ρ·∇)Bu−

1

6ρ
∇(∇ρ·Bu)

]

+ν

[
1

4ρ2
(∇ρ·Bu)∇ρ+

1

3
∇(∇·Bu)−

1

6ρ
(∇·Bu)∇ρ

]
,

ḂT=− 1
√
ρµ0

[
Bu·∇BT−γBT

(
∇·Bu−

∇ρ
2ρ
·Bu

)]
− 2

BT

(∇·h+Qvisc)+4η0ρ
3
2B−4

T (∇×B)2,

where ∇·B=0 is used and the modified definitions of the heat flux h and viscous heating
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Qvisc are

h=−(γ−1)BT

4

[
χ‖b̂b̂+χ⊥

(
I−b̂b̂

)]
·
(
∇BT−BT

∇ρ
ρ

)
, (3.10)

Qvisc=−ν̃
(
∇Bu−Bu

∇ρ
2ρ

)T
:

[(
∇Bu−Bu

∇ρ
2ρ

)
+

(
∇Bu−Bu

∇ρ
2ρ

)T
−2

3
I

(
∇·Bu−Bu·

∇ρ
2ρ

)]
.

See Appendix B for the derivation of these rather unintuitive equations and note that the

incompressible, ideal limits reduce to a version of the usual Elsässer formulation [45]. Here

ν̃ = ρν is the kinematic viscosity. Although many of the nonlinear terms are only quadratic in

q, here the isothermal limit and limit of time-independent density are considered to restrict

models to the pure quadratic nonlinear case:

q̇ =C0 +L0(q) +Q0(q, q), (3.11)

C0 =


− (γ−1)B2

T

2

√
1
µ0ρ
∇ρ
ρ

0

0

 ,

Q0(q, q) =


− 1√

ρµ0

(
Bu(∇ ·Bu) +Bu · ∇Bu − (∇×B)×B

)
∇×

(
1√
ρµ0

(
Bu ×B − di(∇×B)×B

))
0

 ,

L0(q) =


ν
(
∇2Bu − · · · − 1

3ρ
(∇ ·Bu)∇ρ

)
η
µ0
∇2B

0

 .

This is a slight abuse of notation, since these should be discretized operators. Other models,

such as those assuming incompressibility and finite temperature evolution, can also be derived

straightforwardly from the results here. Substituting Eq. (3.6) into Eq. (3.11) and utilizing
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the orthonormality of the χj produces:

ȧi(t) = Ci +
r∑
j=1

Lijaj +
r∑

j,k=1

Qijkajak, (3.12)

Ci = 〈C0 +L0(q) +Q0(q, q), χi〉,

Lij = 〈L0(χj) +Q0(q, χj) +Q0(χj, q), χi〉,

Qijk = 〈Q0(χj, χk), χi〉.

The model is quadratic in the temporal POD modes ai(t). In contrast to Eq. (3.12), a

Galerkin model based on separate POD expansions for each field would involve significant

mixing and a lack of orthonormality 〈χui , χBj 〉 6= δij between the POD modes. Although

Eq. (3.12) contains only quadratic nonlinearities, the influence of truncated low-energy modes

can sometimes be modeled with cubic nonlinearities in the Galerkin model [320, 257]. This

is discussed further below and in Sec. 5.4.2.

3.3.1 Relation to Fourier-Galerkin methods

Similar analytic Fourier-Galerkin models (also called MHD shell models) have been used for

modeling incompressible MHD turbulence [351]. Shell models in MHD have primarily been

used to describe the statistics of homogeneous and isotropic turbulence in spectral space,

rather than as reduced order models [44]. The differences in application likely stem from shell

models preserving the MHD invariants within each triad of wave vectors, but POD models

providing a dataset-tailored and energy-optimal basis. However, in various homogeneous

and symmetric limits, the POD reduces to the Fourier basis [96, 177]. In both Fourier-

Galerkin and POD-Galerkin models, truncation of the model at some rank r can lead to

under-resolving the dissipation rate or approximately breaking the global conservation laws,

and a closure scheme may be required to re-introduce the full dissipation. Additionally, if

energy is not conserved, as in some dissipative MHD models, the stability of the truncated

system is no longer guaranteed.
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3.4 Deriving constraints on projection-based models

The previous section has successfully obtained a POD-Galerkin model for the dynamic

fields in Hall-MHD. However, there is substantial additional structure in the coefficients

in Eq. (3.12) because some local properties and the global MHD conservation laws are in

principle retained in this low-dimensional basis. With regards to local properties, vanishing

∇ ·B and the linear independence of the temporal POD modes produce

∇ · χBi = 0, ∀i. (3.13)

In other words, there is an analytic local divergence constraint for each of the χBi , but this

does not produce insight into the coefficients defined in Eq. (3.12), nor does it guarantee

that Eq. (3.13) holds if χBi is obtained from noisy or low-resolution data. In contrast, global

conservation laws produce substantial constraints on the structure of the Galerkin model

coefficients.

3.4.1 Global conservation of energy

For an examination of the global conservation laws, consider isothermal Hall-MHD with a

very slowly time-varying density. This model reduces to ideal MHD and incompressible,

resistive, Hall MHD in the appropriate limits, and produces (Galtier [133] Eq. 3.22)

∂W

∂t
=−

∫ [
ν̃(∇× u)2 +

η

µ0

(∇×B)2 +
4

3
ν̃(∇ · u)2

]
d3x (3.14)

−
∮ [(

1

2
ρu2 + p

)
u+ P − 4

3
ν̃(∇ · u)u− ν̃u× (∇× u)

]
· n̂dS.

The volume and surface is left intentionally vague but the rigid wall of a plasma device is a

suitable boundary. Here n̂ is a unit normal vector to the boundary, and

P =
1

µ0

E ×B =
ue
µ0

· (B2I −BB)− η

µ2
0

(∇×B)×B, (3.15)
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is the Poynting vector (E is the electric field), which is often an imposed and experimentally-

known function of space and time. Omission of the Hall term changes ue to u in Eq. (3.15).

Even with temperature evolution, the electron diamagnetic term in P does not alter the

energy balance if Dirichlet conditions are used for ρ and T . To simplify, assume that u · n̂=

u× n̂= 0, J · n̂= 0, and B · n̂= 0 at the wall, consistent with the HIT-SI experiment and

HIT-SI simulations described in Sec. 2.1. and Section 5.2.1. Now assume steady-state, define

a0(t) = 1, and substitute Eq. (3.6) into Eq. (3.14),

0≈ ∂W

∂t
=

∮
η

µ2
0

((∇×B)×B) · n̂dS (3.16)

−
∫ [

ν

µ0

(
∇×Bu −

∇ρ
2ρ
×Bu

)2

+
η

µ2
0

(∇×B)2 +
4

3

ν

µ0

(
∇ ·Bu −

∇ρ
2ρ
·Bu

)2
]
d3x,

=WC +
r∑
i=1

WL
i ai +

r∑
i,j=1

WQ
ij aiaj =

r∑
i,j=0

WQ
ij aiaj,

The matrix in the last step is padded so that WQ
0i = 0, WQ

i0 =WL
i for i ∈ {1, ..., r}, and

WQ
00 =WC . Eq. (3.16) is generally satisfied for anti-symmetric WQ

ij , from which it follows
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that

0 =WQ
00 =

η

µ0

∮ [
(∇×B)×B

]
· n̂dS (3.17)

−
∫ [

ν

(
∇×Bu −

∇ρ
2ρ
×Bu

)2

+
η

µ0

(∇×B)2 +
4

3
ν

(
∇ ·Bu −

∇ρ
2ρ
·Bu

)2
]
d3x,

0 =WQ
i0 =

η

µ0

∮ [
(∇×B)× χBi + (∇× χBi )×B

]
· n̂dS

− 2

∫
ν

(
∇×Bu −

∇ρ
2ρ
×Bu

)
·
(
∇× χBui −

∇ρ
2ρ
× χBui

)
d3x

+

∫ [
η

µ0

(∇×B) · (∇× χBi ) +
4

3
ν

(
∇ ·Bu −

∇ρ
2ρ
·Bu

)
·
(
∇ · χBui −

∇ρ
2ρ
· χBui

)]
d3x,

WQ
ij =−WQ

ji =
η

µ0

∮ [
(∇× χBi )× χBj

]
· n̂dS

−
∫ (
∇× χBui −

∇ρ
2ρ
× χBui

)
·
(
∇× χBuj −

∇ρ
2ρ
× χBuj

)
d3x

+

∫
η

µ0

(
∇× χBi

)
·
(
∇× χBj

)
d3x

+

∫
4

3
ν

(
∇ · χBui −

∇ρ
2ρ
· χBui

)
·
(
∇ · χBuj −

∇ρ
2ρ
· χBuj

)
d3x.

Evaluating Eq. (3.17) and the Galerkin coefficients in Eq. (3.12) relies on the existence of

all of the ∇× χi. These spatial POD modes are evaluated on a discrete set of spatial

locations, but in practice one can always choose an interpolation such that the curl operator

is well-defined. In such a case, ∇× χBi and ∇× χBui have natural interpretations as the

spatial POD modes of the electromagnetic current and vorticity fields. However, here these

computations only serve as formal manipulations, so it is not necessary to evaluate these

curls. Moreover, the data-driven methods in Section 5 use sparse regression to determine

these coefficients from data. Continuing on with the analysis, one can compute aiȧi for
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i ∈ {1, ..., r},

aiȧi =
r∑

i,j=1

ai
∂aj
∂t

∫
χi · χjd3x=

∫
1

2

∂q2

∂t
d3x=

∂W

∂t
, (3.18)

aiȧi = aiCi + aiLijaj + aiQijkajak, i, j, k ∈ {1, ..., r}. (3.19)

First, note that WQ
i0 = 0 produces Ci = 0 for all i ∈ {1, ..., r}. There are no constant terms

in the Galerkin model. This is a physical consequence of the assumption that q is steady-

state; nonzero constant terms would imply the possibility of unbounded growth in the energy

norm. The anti-symmetry of WQ
ij for i, j ∈ {1, ..., r} constrains the quadratic structure of

the energy aTa,

aTLa≈ 0. (3.20)

This physical interpretation is also clear. If the plasma is steady-state but has finite dis-

sipation, the input power, here manifested through a purely quadratic Poynting flux P ∝

ηJ ×B, must be balancing these losses. Finally, there are no cubic terms in the time

derivative of the energy in Eq. (3.16), implying

aTQaa= 0, (3.21)

or equivalently,

Qijk +Qjik +Qkij = 0. (3.22)

In other words, the quadratic nonlinearities in the Galerkin model of Eq. (3.12) are energy-

preserving. This conclusion did not rely on any assumption of steady-state and energy-

preserving structure in other quadratic nonlinearities is well-studied in fluid mechanics [390,

257, 209] and addressed more directly in Chapter 5. The lack of cubic, nonlinear energy
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losses is a physical consequence coming from the boundary conditions B · n̂= 0, J · n̂= 0,

u · n̂= u× n̂= 0 (and constant temperature). Note that the orthogonality of the POD

basis allowed us to conclude that each of the terms in Eq. 3.19 vanishes separately, rather

than all together.

3.4.2 Global conservation of cross-helicity

An analogous derivation can be done to further constrain the model-building for systems

which conserve cross-helicity, which includes incompressible ideal and resistive MHD tur-

bulence, assuming suitable boundary conditions. Consider the local form of cross-helicity

Hc = u ·B. Using Galtier [133] Eq. (3.36),

∂Hc

∂t
=−∇·

(u2

2
+

γp

(γ−1)ρ

)
B+u×(u×B)− di√

ρµ0

u×
(
(∇×B)×B

)
−ηu×(∇×B)

 (3.23)

+ν∇·
(
B×(∇×u)+

4

3
(∇·u)B

)
− di√

ρµ0

(∇×u)·
(
(∇×B)×B

)
−(η+ν)(∇×B)·(∇×u).

Consider again the simplifying case J · n̂= 0, B · n̂= 0, and u · n̂= u× n̂= 0. If global

cross-helicity is conserved, the integral form is

0≈
∫

∂Hc

∂t
d3x=

∫
ν
∇ρ
ρ
·
(
B × (∇× u) +

4

3
(∇ · u)B

)
d3x (3.24)

−
∫ [

di√
ρµ0

(∇× u) ·
(
(∇×B)×B

)
+ (η + ν)(∇×B) · (∇× u)

]
d3x.
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Substituting Eq. (3.6) into Eq. (3.24) produces terms up to cubic in the temporal POD

modes,

0≈
∫

∂Hc

∂t
d3x=

∂

∂t
(aiaj)

∫
1
√
ρµ0

χBui · χBj d3x (3.25)

= AHcij
∂

∂t
(aiaj)→


AHcij Cjai

AHcij Ljkaiak

AHcij Qjklaiakal

≈


0

0

0


Note that if the system is energy-preserving, Cj = 0 for all j, so the first equality is already

satisfied. The second equality determines that AHcij Ljk is anti-symmetric under swapping

i and k, and energy-preservation in Eq. (3.20) produces anti-symmetry under swapping j

and k. The most straightforward solution is Ljk = 0 for all j,k; this solution is precisely

the ideal limit corresponding to η = ν = 0. Since AHcij is not symmetric, this constraint can

also apply to systems which conserve cross-helicity despite finite dissipation. In other words,

cross-helicity can be injected into the device in a way that balances the dissipation, which is

a form of “power balance” for the cross-helicity.

Lastly, AHcij Qjkl, containing only the contribution from the Hall-term, exhibits the same

structure as (and is compatible with) the constraint on the energy-preserving nonlinearities

in Eq. (3.21). The simplest solution is AHcij Qjkl = 0 for all i, k, l, since this corresponds to

standard MHD without the Hall term. Like the analysis of the linear terms, this constraint

indicates that it is possible that there are indices for which AHcij Qjkl 6= 0 but overall sat-

isfy AHcij Qjklaiakal = 0, so that nonzero Hall contributions can still conserve cross-helicity.

However, cross-helicity is not an ideal invariant of Hall-MHD since in the volume the Hall-

term can act as both dissipation or a source and this would require the unlikely scenario

that all of the volumetric contributions sum to approximately zero. Note that without

the Hall term, the remaining terms in Eq. (3.24) are only up to quadratic in nonlinearity.

Therefore, there are a class of common boundary conditions under which even viscoresistive

MHD fluids exhibit quadratic nonlinearities that are cross-helicity preserving, in analogy
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to energy-preserving, quadratic nonlinearities satisfying Eq. (3.21) that occur commonly in

fluid mechanics [390]. Lastly, although inviscid Hall-MHD with these boundary conditions

has other time-invariants through the mass, momentum, magnetic helicity, and generalized

helicity, enforcing the helicity invariants may require alternative formulations to the one

presented here, since derived fields like the vector potential are involved. Mass conservation

cannot be straightforwardly related to the the POD-Galerkin model in Eq. (3.12) because

the density is not included in the definition of q = [Bu,B,BT ]. However, in principle the

momentum provides additional model constraints.

3.4.3 Global conservation of momentum

Similarly to the previous sections, the change in fluid momentum in time can be found in

Galtier [133],

∂(ρu)

∂t
=−∇ ·

(
ρuu+

B2

2µ0

I − BB
µ0

+ pI + Π

)
, (3.26)

and the global change in fluid momentum is,

∂

∂t

∫
ρud3x=−

∮ (
ρuu+

B2

2µ0

I − BB
µ0

+ pI + Π

)
· n̂dS (3.27)

=

∮ (
B2

2µ0

n̂+ Π · n̂

)
dS.

Since time derivatives of the magnetic field are not involved, the Hall-term is irrelevant here,

and the boundary conditions B · n̂= 0 and u · n̂= 0 have been used. If there is a balance

between the viscous dissipation of momentum and momentum carried with the magnetic

field (presumably this magnetic field is being externally sustained), then

0≈ ∂

∂t

∫
ρud3x=

∮ (
B2

2µ0

n̂+ Π · n̂

)
dS. (3.28)
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Moreover, from the POD-Galerkin model it follows that (neglecting the time dependence of

ρ here)

0≈
∫

∂(ρu)

∂t
d3x=

∫
1
√
µ0ρ

Ḃud
3x= ȧi

∫
1
√
µ0ρ

χBui d3x= CM
i ȧi, (3.29)

= CM
i (Ci + Lijaj +Qijkajak).

Therefore, if one can reasonably approximate CM
i from measurements of the density and the

spatial POD modes of Bu, then the terms in Eq. (3.29) should separately vanish. This is

interesting but it is unclear what kind of plasma device conserves global momentum in this

way and it is difficult in practice to approximate CM
i . If plasma devices are balancing any

quantity at all, it is usually the energy or magnetic helicity.

3.4.4 Conservation laws with velocity units

The previous sections have illustrated that the choice of magnetic field units in Eq. (3.7)

allows one to relate global MHD conservation laws to the structure of the coefficients in

the POD-Galerkin model. It is worth exploring any alterations in velocity units (in closer

analogy to fluid dynamics) q = [u, uA, us],

u2
s =

4T

mi(γ − 1)
, uA =

B
√
µ0ρ

,
1

2
〈q, q〉=

1

2

∫ (
u2 + u2

A + u2
s

)
d3x, (3.30)

where us is defined as a scaled plasma sound speed. If ρ is uniform, ρ〈q, q〉/2 =W . The

isothermal and time-independent density assumptions allow us to derive another quadratic

model in q, for which a POD-Galerkin model is readily available (the form is identical

to Eq. (3.12) but the POD modes and coefficients have changed). Once again, assume

u · n̂= u× n̂= 0, J · n̂= 0, and B · n̂= 0 on the boundary, so that

∫
ρ

2

dq2

dt
d3x=

∂W

∂t
. (3.31)
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This is equivalent to Eq. (3.18) in the particular case of time-independent density. Without

this assumption, an extra term appears, proportional to
∫
u · ∇(u2 + u2

A)d3x. Although from

dimensional analysis this term is potentially very large, this may not be the case for many

laboratory devices with strong anisotropy introduced by a large external magnetic field. For

instance, steady-state toroidal plasmas with large closed flux surfaces would expect u · ∇u2
A

and u · ∇u2 to be small, as the fluid velocity is primarily along field lines and gradients in

both the magnetic and velocity fields are primarily across field lines. For this reason, in

certain devices the use of q = [u, uA, us] could be a useful alternative to the formulation

used in the main body of this work. It is possible that, in these units, the structure of the

nonlinearities in the associated POD-Galerkin model may prove more amenable to analysis

or computation.

3.4.5 Hyper-reduction techniques

Now that it has been illustrated how global conservation laws manifest as structure in

Galerkin models, one could compute the coefficients in Eq. (3.12) and evolve the subse-

quent model. However, in order to calculate the model coefficients, spatial derivatives for ρ,

Bu, and B (and BT if temperature is evolved) must be well-approximated in the region of

experimental interest. In some cases, high-resolution diagnostics can resolve these quantities

in a particular plasma region. Even if the high-quality data is available, for instance through

simulations, computing these inner products and evaluating the nonlinear terms is expensive,

because the fields have the original spatial dimension. This somewhat reduces the useful-

ness of projection-based model reduction. Fortunately, there are hyper-reduction techniques

from fluid dynamics [34], such as the discrete empirical interpolation method (DEIM) [85],

QDEIM [111], missing-point estimation [13] and gappy POD [440, 79], which can enable

efficient computations. Instead of using hyper-reduction, this work turns to emerging and

increasingly sophisticated machine learning methods in Section 5 to discover Galerkin models

from data. There are three primary reasons to derive the POD-Galerkin model structure here

anyways: 1) this analysis indicates that one can search plasma datasets for systems of ODEs
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consisting only up to quadratic polynomials, as shown in Chapter 5, 2) it provides the the-

oretical basis for the incorporation of model constraints from global conservation laws, and

3) it provides a theoretical basis for projection-based model reduction and hyper-reduction

techniques in future MHD work.
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Chapter 4

DYNAMIC MODE DECOMPOSITION FOR PLASMAS

Although Chapter 3 focused on the POD basis, there are many different low-dimensional

bases that can be used for different experimental or analytic tasks. POD modes tend to have

a dominant frequency but they may also mix the frequency content, as the SVD optimization

identifies orthogonal modes purely based on energy content. This frequency mixing in POD

modes was one of the main motivations for the development of DMD in the fluids community.

DMD is particularly attractive for physics research relevant to plasma waves and instabilities

as it decomposes time-series signals into spatially correlated modes that are constrained

to have periodic dynamics in time, possibly with a growth or decay rate. Thus, DMD

isolates the data frequency content and results in a reduced set of spatial modes along

with a linear model for how they evolve in time. Although DMD yields a linear model,

the algorithm has strong connections to nonlinear dynamical systems via Koopman operator

theory [371, 294, 295, 324, 326, 442, 417, 223]. There have also been several recent innovations

and extensions to DMD that improve its ability to model complex systems, including for

control [353], multi-resolution analysis [236], nonlinear observations [442], the incorporation

of physical priors [16], and modal analysis from data that is undersampled in space [154, 60]

and time [428]. Although DMD is known to be sensitive to noise [17], several algorithms exist

to address this issue [171, 101, 12]. This collection of DMD algorithms may provide more

efficient reduced-order models and deeper physical insight into the inner workings of plasmas.

DMD has also been increasingly used in the plasma physics community, including for modal

analysis [419, 207, 234, 312], identification of limit-cycle dynamics in 2D turbulent cylindrical

plasma simulations [382], prediction and speedup of plasma kinetic simulations [314, 313],

and other plasma simulation accelerations [103].
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Interestingly, subspace system identification (SSI) methods have already been used across

scientific domains for extracting single-frequency modes from data [355]. In plasma physics,

SSI has been used for instability identification and magnetic spectroscopy in simulation and

experimental tokamak data [329, 330, 437, 254]. Variants of SSI differ only with respect to

the weighting scheme of the SVD [433] but the connections between SSI and the variants of

DMD have been unclear despite the obvious similarities. Fortunately, a recent paper [400]

indicates that, at least for autonomous systems, SSI and some forms of DMD [235, 165]

are equivalent. This is good news for unifying SSI and the burgeoning DMD literature in

plasma physics (which appear to be unaware of the other), as well as understanding when

SSI or DMD may be more preferable for a given task. However, as detailed in the previous

paragraph, there are many DMD variants and plenty of future work still to make additional

connections with SSI. The study presented in this chapter has also been published as a

paper in Kaptanoglu et al. [207]. This section begins with a description of the experimental

and simulation datasets that were used so that the results generated with the DMD can be

properly interpreted.

4.1 Data from the HIT-SI experiment and simulations

The HIT-SI experiment has an array of magnetic field probes that encircle four poloidal

cross sections at toroidal angles φ= 0, 45, 180, and 225 degrees, illustrated on the right

in Fig. 4.1. On the left side in Fig. 4.1, the 18 surface probes are shown in one of the

four identical poloidal cross sections. There are also additional probes, labeled L05 and

L06, which are spaced out every 22.5o, for a total of 96 probes. Each probe measures the

components of the magnetic field that are locally tangential to the conducting wall. With

the exception of the probes labeled L05 and L06, the tangential directions are the toroidal

φ and poloidal θ directions, and Br ≈ 0. The experimental probes have a time resolution

∆t≈ 2 µs.

In addition to analyzing experimental data from these magnetic probes in Section 4.3,

in Section 4.4 an investigation is performed to analyze coherent magnetic structures for the
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Figure 4.1: Surface probe locations in a HIT-SI cross section, and from a top view. There
are 96 probes in total.

“BIG-HIT” extended MHD simulations using the NIMROD code [405]. BIG-HIT are mostly

identical to a typical HIT-SI simulation, but the device has been enlarged by a factor of 2.5.

Morgan et al. [305] provides more details on this simulation.

Simulation data is collected from the location of the experimental surface probes as well

as a set of internal probes, all of which measure the magnetic field. In principle any set of

normalized measurements may be used. For simplicity, all of the measurements and results

in this Chapter 4 are reported in units of Gauss, and hereafter magnetic field units are

omitted. In order to analyze the toroidal structure of the internal magnetic field in this

simulation, 32 internal magnetic probe arrays are “placed” equally spaced toroidally at the

Z = 0 midplane. Each synthetic array contains 160 measurement points at equally spaced

radial locations between 0≤R≤ 1.34 m. It will be shown that a sparse set of only 24

well-separated internal, synthetic, magnetic probes captures the mode structures that are

observed with the full 160× 32 = 5120 internal magnetic probes, providing evidence that

this analysis is relevant to experimental devices with a small number of unevenly spaced

measurements.

All experimental or simulation probe measurements at a fixed time tk are arranged into
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a snapshot column vector qk ∈ RN with corresponding data matrix X, as in Eq. (3.3).

For both the experimental and simulation data without the internal probes, N = 192 and

M ≈ 500− 1000, as typical discharges are 1− 2 ms with measurement resolution ∆t≈ 2 µs.

The small dataset used in Section 4.4 has 96 surface probes (192 measurements because each

surface probe reports two components of the magnetic field) and 24 internal probes. The

large simulation dataset has 96 surface probes and 5120 internal probes.

4.2 DMD algorithms

Proceeding with the exact DMD formulation and assuming that the state variables qk are

directly accessible for simplicity, (although adding observables is straightforward) the non-

linear evolution of the magnetic field may be approximated by a best-fit linear operator Â

that evolves the state qk forward in time:

qk+1 ≈ Âqk. (4.1)

The dynamic mode decomposition approximates the leading eigenvalues and eigenvectors of

the linear operator Â. To approximate Â from data, two matrices are constructed, X and

X ′

X =

q1 q2 . . . qM−1

 , X ′ =

q2 q3 . . . qM

 ,
which are related by =

X ′ ≈ ÂX. (4.2)

Observe that X and X ′ are identical to the original data matrix X defined in Eq. (3.3),

except that either the first or last column is truncated off. The best-fit linear operator Â
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that satisfies Eq. (4.2) is the solution to the following least-squares optimization:

Â= argmin
Â

‖X ′ − ÂX‖F =X ′X+ ≈X ′VrΣ−1
r U

†
r ,

whereX+ is the pseudoinverse of the matrixX. However, when the measurement dimension

N is large, then Â is too large to analyze directly, and instead Â is projected onto the first

r singular vectors Ur:

Ã=U †r ÂUr =U †rX
′X+Ur =U †rX

′VrΣ
−1
r (4.3)

Next, the eigendecomposition of Ã is computed:

ÃWÃ =WÃΛ. (4.4)

The diagonal matrix Λ contains the eigenvalues λ̃j of Ã, which are also eigenvalues of Â.

The corresponding eigenvectors of Ã (and Â) may be computed as

Φ =X ′VrΣ
−1
r WÃ. (4.5)

The columns ϕj of Φ are DMD eigenvectors corresponding to DMD eigenvalues λ̃j. It is

then possible to reconstruct the state at time k∆t:

qk =
r∑
j=1

ϕjλ̃
k−1
j bj = ΦΛk−1b, (4.6)

where b is a vector of DMD mode amplitudes. In the simplest case, it is possible to approxi-

mate b= Φ+q1, although the sparsity-promoting and optimized variants below will provide
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more principled approaches to approximate b. The data matrix X may then be written as

X ≈

ϕ1 · · · ϕr



b1

. . .

br




1 λ̃1 · · · λ̃M−1
1

...
...

. . .
...

1 λ̃r · · · λ̃M−1
r

 .

The eigenvalues λ̃j describe the discrete-time dynamical system in Eq. (4.1). It is often

beneficial to analyze the corresponding continuous-time eigenvalues ωj = log(λj)/∆t, with

νj = Re(ωj)/2π, fj = Im(ωj)/2π. It is then possible to approximate the data matrix X as

X ≈

ϕ1 · · · ϕr


︸ ︷︷ ︸

Φ


b1

. . .

br


︸ ︷︷ ︸

diag(b)


eω1t1 · · · eω1tM−1

...
. . .

...

eωrt1 · · · eωrtM−1


︸ ︷︷ ︸

T (ω)

where diag(b) is a diagonal matrix of the mode amplitudes bj and T (ω) is a Vandermonde

matrix. Note that the continuous-time eigenvalues are computed from the entire time se-

ries, and the index k in Λk−1 serves only to indicate the amount of time elapsed (i.e. the

eigenvalues are not recomputed every time step). The dynamics of each mode are separated,

so that it is possible to isolate and examine a single spatiotemporal structure without the

confounding effects of other modes. This will be particularly useful to characterize instability.

It is possible to obtain a better estimate of the mode amplitudes b with the following

minimization problem:

argminb||X −Φ diag(b) T (ω)||F . (4.7)

This formulation is the basis of the DMD extensions presented in the following sections.
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4.2.1 Sparsity-promoting DMD

A central tension in reduced-order modeling is that including more modes often increases

accuracy while reducing model interpretability. However, sparsity promotion through an

addition L1 penalty term has become a common technique for machine learning and data

analysis [63] because it can produce sparse and interpretable models in terms of a few essential

modes. Jovanovic et al. [199] introduced an L1 penalty in the DMD optimization

min
b

(
||X −Φ diag(b) T (ω)||F + γs||b||1

)
(4.8)

to identify the key DMD modes. Here γs determines the level of sparsity. Following Jovanovic

et al., this optimization problem was solved by writing it in a more convenient form which

can be solved with the alternating direction method of multipliers [136]. This type of sparsity

promotion is foundational to the methods in Chapter 5.

4.2.2 Optimized DMD

Depending on the scientific aims, the absence of a complete set of spatiotemporal DMD

modes could be problematic. This lack of completeness implies that reconstructions of spe-

cific signals in the data matrix may be less accurate than the POD. This could be an issue

if a very accurate fit of a subset of the data is desired, either for data-driven discovery or

for control purposes. The optimized DMD of Askham and Kutz [12] addresses this issue

by simultaneously considering the best-fit linear operator between all snapshots in time, as

opposed to only considering sequential snapshots, as in the standard DMD. The optimized

DMD results in excellent signal reconstructions, but at the cost of solving a potentially

large, nonlinear optimization problem. The key to applying this method is a variable projec-

tion algorithm [12] that simplifies the nonlinear optimization. An additional benefit is that

snapshots are no longer required to be evenly space in time. Defining Φb = Φ diag(b), the
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nonlinear minimization problem is now

min
ω,Φb

||X −ΦbT (ω)||F . (4.9)

This problem is similar to the original DMD minimization, but the DMD fit is now

optimized with respect to both ω and Φb. This problem can be solved with a variable

projection followed by the Levenberg-Marquardt algorithm [245, 278], which relies on a QR

decomposition. For speed, the code implements a parallel QR decomposition called direct

TSQR [37]. This algorithm is not guaranteed to find the global minima, but only a local

one, so it benefits from an accurate initial guess. It is often useful to initialize using the

results of the other DMD methods. Note that for real-valued data, the DMD methods give

complex conjugate pairs. The implementation here breaks the complex conjugate symmetry,

although it is possible to explicitly retain this symmetry [12]. This can be seen visually in

Fig. 4.2a. However, reconstructions are built with the average of each mode and its complex

conjugate, guaranteeing real-valued data.

There is often a trade-off between model interpretability and reconstruction accuracy.

The sparsity-promoting DMD algorithm produces interpretable models, and the optimized

DMD algorithm accurately reconstructs low-energy features and transient instabilities in the

data. In this way, the strength of using a combination of DMD methods to understand a

dynamic system is illustrated in the next sections. Throughout Chapter 4, blue, red, and

green colors are used for the exact DMD, sparsity-promoting DMD, and optimized DMD,

respectively.

4.3 Comparison of DMD algorithms on an experimental HIT-SI Discharge

The exact, sparsity-promoting, and optimized DMD variants are compared on real experi-

mental HIT-SI data in order to understand their relative strengths and weaknesses in iden-

tifying interpretable and accurate reduced-order models. In the following, an analysis of

diagnostic data from the high-performance HIT-SI discharge 129499 (f inj
1 = 14.5 kHz) is per-
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formed. This discharge has been investigated extensively in previous studies [304, 435, 183].

The remaining analysis in this Chapter 4 will focus on the period of spheromak sustain-

ment for the experimental and simulation data. Because DMD associates the spheromak

and the injectors each with a single oscillation frequency, the modes are denoted f0 (f0 ≈ 0)

and f inj
1 throughout Chapter 4. The higher harmonics of the injector frequency are f inj

2 , f inj
3 ,

and so on.

4.3.1 DMD eigenvalues

The DMD eigenvalues determine the time evolution of the corresponding spatially coherent

DMD modes. Figure 4.2a compares the eigenvalues for each of the three DMD methods;

the eigenvalues are scaled by their amplitudes |bj|. In each case, the SVD is truncated at

r = 20 modes to avoid overfitting. The x-axis represents the imaginary component of the

eigenvalue, and the y-axis represents the real component so that eigenvalues in the upper

half plane are unstable and those in the lower half plane are stable.

The magnitude plot indicates that sparsity-promoting DMD is effective at isolating the

three dominant modes, whereas exact and optimized DMD both result in spectra with many

energetic modes. Although it appears that there are only two very energetic modes for op-

timized DMD, these modes decay extremely quickly, so that other modes become relatively

more important. Thus, sparsity-promoting DMD is capable of extracting and isolating the

leading large-scale magnetic structures in the experiment, providing enhanced interpretabil-

ity. In contrast, the next section will show that optimized DMD is needed to extract and

analyze small-scale transient modes for a more accurate fit. The large number of quickly

decaying modes for all the methods indicates that despite the parsimonious r = 20 trunca-

tion, the dynamics can be well-fit with a lower-dimensional model. Another interpretation is

that high-precision fits of the data require shorter time windows, suggesting a sliding-window

DMD for forecasting and control.
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4.3.2 DMD reconstruction and forecasting

A common scientific aim is an accurate reconstruction of diagnostic signals using a subset

of the modes from a reduced-order model. The advantage of the optimized DMD over the

other algorithms is apparent from the reconstruction of a surface probe, as in Fig. 4.2b. The

exact DMD and sparsity-promoting DMD capture the bulk evolution, but the optimized

DMD also captures the deviations. The DMD methods are trained on a subset of the data

and then evolved in time to forecast the remaining data. The optimized DMD provides

the most accurate forecast. However, this model contains exponentially growing modes that

will eventually diverge. Including more than r = 20 modes causes optimized DMD to overfit

and results in more unstable modes. These observations are reaffirmed quantitatively on

simulation data in the next section.

4.4 DMD analysis on BIG-HIT simulations

Physical understanding can be obtained from reduced-order models by extracting coher-

ent structures and analyzing their spatiotemporal content. Here, we decompose the spa-

tial dependence into Fourier modes because the spatial Fourier dependence is important

in many experimental devices to determine MHD stability. For toroidal devices, such as

HIT-SI, the toroidal and poloidal Fourier wavenumbers are denoted (nφ, mθ). In HIT-

SI, when the safety factor qs satisfies qs > 1, it can be shown to be kink-unstable to the

(nφ, mθ) = (1, 1), (2, 2), (3, 3), ... modes [189]. Sawtooth oscillations from these resistive kink

modes are also common in toroidal devices when min(q)< 1<max(q) [439, 116].

Here, the DMD methods described in Section III are quantitatively compared based

upon their ability to characterize the simulated large-size version of HIT-SI, named BIG-

HIT. These 3D simulations were performed using a Hall-MHD model, assuming constant

and uniform temperature and density. Relevant constants include the plasma temperature

Ti = Te = 71 eV, density n= 1.5× 1019 m−3, resistivity η = 8.9× 10−7 Ω-m, and injector

frequency f inj
1 = 14.5 kHz. For more parameter details, see the original analysis and prior
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Figure 4.2: Summary of the DMD analysis for the experimental discharge 129499. (a) The
DMD eigenvalues plotted in the complex plane, νj = Re(ωj)/2π and fj = Im(ωj)/2π, for the
experimental shot at f inj

1 = 14.5 kHz, weighted by |bj| until some minimum dot size; there are
r = 20 modes. Modes above the dashed horizontal line are unstable. (b) The reconstruction
and forecasting performance of each DMD method. The vertical black line indicates where
forecasting begins. While optimized DMD provides the most accuracy, it also produces
several growing modes that will eventually diverge.
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Figure 4.3: Raw BIG-HIT simulation data in the window 22.7 ms ≤ t≤ 28.5 ms indicates
at least three large magnetic rearrangements captured poorly (well) by the synthetic surface
(internal) probe illustrated here.

implementations of the model [5, 305].

To demonstrate the ability of these methods to work on small subsets of data, only sim-

ulation data in the range 22.7 ms ≤ t≤ 28.5 ms is used. Representative surface and internal

probe Bθ time evolutions are depicted in Fig. 4.3 for this time range. The performance on a

sparse and spatially well-separated dataset of 24 internal probes is compared with a large and

uniformly spaced dataset of 5120 internal probes, in order to illustrate that the conclusions

of this analysis on high-resolution data hold in the limit of low spatial resolution.

4.4.1 DMD reconstruction error

Each extension of the dynamic mode decomposition has its particular strengths and weak-

nesses. In the previous section, the sparsity-promoting DMD resulted in interpretable mod-
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els, while the optimized DMD provided excellent reconstructions of the experimental data.

Now using BIG-HIT simulation data in the shortened window 22.7 ms ≤ t≤ 23.5 ms, Fig-

ure 4.4 provides a quantitative comparison of the different DMD algorithms. For the exact

and optimized methods, the relative reconstruction error is plotted as a function of the SVD

truncation rank. The relative reconstruction error is defined as

εDMD =
||X −Φ diag(b) T (ω)||F

||X||F
. (4.10)

The sparsity-promoting scan is performed with fixed r = 140 while γs is varied. The factor

1/γs is labeled on the top axis in Fig. 4.4a (and colored red to indicate it applies only to the

sparsity-promoting case) so that it can seen clearly that as γs→ 0, the sparsity-promoting

results converge to exact DMD. The exact and optimized DMD methods use only the bottom

axis, since the truncation number r is being varied. As γs increases, the reconstruction

error of the sparsity-promoting DMD model also increases, as one would expect for a more

parsimonious model.

At r ≈ 140, the optimized DMD reconstruction error is an order of magnitude smaller

than the exact DMD error (εDMD ≈ 0.009 against εDMD ≈ 0.05). In fact, optimized DMD

with r = 10 obtains the same reconstruction error as exact DMD with r = 140. However,

at r = 160, the optimized DMD error increases significantly. In this case, the initialization

procedure chooses a poor first guess consisting of exponentially growing modes, which results

in optimized DMD converging to a suboptimal minimum. Spurious unstable modes is a

general issue with a number of DMD algorithms. These issues are often mitigated with

a suitable rank truncation in the SVD (either manually or through sparsity promotion),

a different window, or a more accurate initialization procedure. There are many DMD

algorithm extensions that can provide additional improvements [235].
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Figure 4.4: Quantitative DMD analysis for BIG-HIT simulation data in the time window
defined by 22.7 ms ≤ t≤ 23.5 ms. In (a) the optimized DMD obtains the most accurate
reconstructions, and sparsity-promoting DMD is shown to converge to exact DMD as γs→ 0.
The top (red) axis applies only to the sparsity-promoting DMD, while the bottom axis applies
to the other methods. Stars correspond to the sparsity-promoting DMD power spectra in
(b). For large r, a bad initial guess results in optimized DMD converging to local minimum
with poor reconstruction. In (b) the normalized power spectrum of sparsity-promoting DMD
illustrates overall suppression of DMD modes and fewer large peaks as γs increases.
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4.4.2 DMD mode characterization

Physical insights into the dominant low-dimensional structures have the potential for im-

proved understanding or control. In this section, sparsity-promoting DMD is used to char-

acterize the dominant modes observed in BIG-HIT. Here, an analysis is presented of the

Bθ measurements from the synthetic surface probes, as well as the Bz measurements from

the synthetic internal probes at the Z = 0 midplane. Note that at Z = 0, Bz is either par-

allel or anti-parallel to Bθ and the sign choice does not affect the toroidal decomposition

of this field (also, since all the internal probes are at Z = 0, the internal probes cannot be

poloidally decomposed). The reconstructions at Z = 0 for the f0–f inj
3 and fkink (described

later in Sec. 4.4.5) modes are illustrated in Fig. 4.5.

To analyze the spatial structure of each mode, reconstructions of the probe signals are

created using only the relevant subset of DMD modes. These reconstructions map the probe

locations to the proper location in (R, θ, φ) space. A Fourier decomposition in the toroidal

direction is performed separately for each set of probes with the same radial location. The

toroidal decomposition for the internal probes is

Bz(R, φ, t)≈
Nmax∑
nφ=0

B̃z
nφ

(R, t) cos(nφφ− ζnφ) (4.11)

and the toroidal and poloidal decompositions for the surface probes are,

Bθ(R, θ, φ, t)≈
Nmax∑
nφ=0

B̃θ
nφ

(R, θ, t) cos(nφφ− ζtor
nφ

), (4.12a)

Bθ(R, θ, φ, t)≈
Mmax∑
mθ=0

B̃θ
mθ

(R, φ, t) cos(mθθ − ζpol
mθ

). (4.12b)

To resolve the first Nmax modes, 2Nmax + 1 unique toroidal locations are required, and simi-

larly for the poloidal direction. For evenly spaced measurements the coefficients can be found

directly by orthogonality. A general method of obtaining the coefficients of these decompo-
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sitions for irregularly spaced angular measurements can be found in the reference on HIT-SI

surface probes [448]. Since the internal probes coefficients B̃z
nφ

(R, t) are still too unwieldy

to present clear results, especially for the set of 5120 internal probes, instead the absolute

value of the B̃z
nφ

(R, t) coefficients is used and averaged over the Fourier transforms obtained

from different radial locations. This procedure results in

〈B̃z
nφ

(t)〉=
1

Nrad

Nrad∑
i=1

|B̃z
nφ

(Ri, t)| (4.13)

where Nrad is the number of radial locations where a separate Fourier decomposition is

performed. This quantity gives an average sense of the total toroidal dependence of the

reconstructed Bz. For the poloidal Fourier decompositions, the four poloidal arrays of sur-

face probes are separately decomposed and then similarly averaged (dropping the radial

dependence since the probes in each array have identical radial locations)

〈B̃θ
mθ

(t)〉=
1

4

4∑
i=1

|B̃θ
mθ

(φi, t)|. (4.14)

Now that metrics are defined for quantifying the spatial Fourier dependence of the modes

in the poloidal and toroidal directions, the spatial structures of the primary dynamics are

investigated.

4.4.3 Sparsity-promoting DMD: First injector harmonic

The HIT-SI injectors drive large magnetic perturbations that sustain the spheromak. They

are intentionally operated with an approximate nφ = 1 symmetry, but a full picture of the

injector field structure is important for understanding the current drive and sustainment in

this device. Reconstructions of the magnetic fields with only the injector mode reveal an

overwhelming nφ = 1 dependence. There is also a phase shift of approximately 180o between

the core and edge region of the plasma, shown in Fig. 4.5, consistent with ion doppler

spectroscopy measurements on the experiment [181]. A simulated version of this discharge
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shows similar results [304]. This suggests a large-scale transition between the inner and outer

regions of the plasma. This phase shift occurs at R≈ 0.8− 0.9 m, close to the closed flux

surfaces in the plasma.

4.4.4 Sparsity-promoting DMD: Second injector harmonics

Sub-harmonic, harmonic, or nearly-harmonic oscillations are a common feature observed in

the nonlinear response to periodic inputs [215]. Modes oscillating at the harmonics of the

injector frequency are often identified by the DMD algorithms. Surprisingly, the DMD mode

corresponding to the second harmonic depends mostly on the even toroidal numbers with

dominant nφ = 2. Moreover, Fig. 4.5 shows that there is a phase shift of approximately 180o

at R≈ 1.05 m and a smaller shift at R≈ 0.3− 0.4 m. One possible interpretation is that

the toroidally even part of the perturbation is filtered out where there is closed flux.

To investigate whether or not this mode corresponds to a physical structure, the BIG-

HIT simulation Bz
nφ=2 is directly analyzed. A rich, previously unobserved, three-dimensional

structure is discovered in the simulation, shown in Fig. 4.6. This structure wraps around the

outside of the device by looping through the different injector mouths, and spirals down the

core of the device, rotating at f ≈ f inj
2 . A comparison of this structure at Z = 0 with the DMD

reconstruction using only the f inj
2 mode shows surprising agreement. The reconstruction is

able to capture much of the structure observed in the simulation, including the two phase

shifts mentioned earlier.

This mode is also present in HIT-SI simulations that evolve the full Hall-MHD equations,

as opposed to BIG-HIT, which does not evolve temperature and density. These simulations

have carefully chosen parameters to match the experiment, and are thus expected to be the

most representative of the HIT-SI experiment. Taken along with the results from Sec. 2.3.4,

this is the first identification of a physical and coherent 3D structure in HIT-SI simulation

or experiment beyond the dominant injector modes and the spheromak.

The f inj
3 mode exhibits mostly odd toroidal mode number dependence and a dominant

nφ = 3 dependence at R≈ 0.1. However, this mode only accounts for approximately 1% of the
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total Bz energy and has similar Fourier dependence as the f inj
1 mode, making it exceedingly

difficult to verify if this mode is contained in Bz
nφ=3 in the simulation, as was done for

the f inj
2 mode. This difficulty should come as no surprise because DMD decomposes the

magnetic field into different oscillating and rotating structures that may have a complicated

Fourier structure. Decomposing the magnetic field into Fourier components may obfuscate

the coherent structures. This is in fact one of the primary motivations for reduced order

models constructed from alternative bases.

The fkink mode in Fig. 4.5 refers to the mode obtained by the optimized DMD, and

is discussed in the next section. A summary of the toroidal and poloidal dependence for

the f0, f inj
1 , f inj

2 , and f inj
3 modes, as well as the fkink mode analyzed in the next section,

can be found in Fig. 4.8 for both datasets. All of the modes exhibit a broad poloidal

spectrum that is expected for this device; the surface probes are arranged on the bowtie-

shaped boundary of the HIT-SI device, and subsequently tend to observe a plasma with

many poloidal wavenumbers.

4.4.5 Optimized DMD: Kink instability

Linear MHD stability is of considerable importance in the plasma physics community, es-

pecially for confinement devices. While the interpretable models of the previous section

allowed for the identification of large-scale physical structures while avoiding overfitting, the

optimized DMD is useful for accurate modeling of transient instabilities over smaller time

windows.

In Fig. 4.7, Poincaré plots from BIG-HIT show closed flux surfaces that exhibit an nφ = 1

structure and quasi-periodic sawtooth activity from a (1, 1) kink instability, which is con-

sistent with the Kadomtsev or Wesson models [439]. The linear growth rate of the resistive

(nφ, mθ) = (1, 1) kink is [439]

ν11 =
1

2π

(
ηq′(R1)Bθ(R1)

µ2
0R

2
1ρ

) 1
3

. (4.15)
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Figure 4.5: Bz at Z = 0 of the sparsity-promoting DMD modes f0, ..., f
inj
3 and optimized

DMD mode fkink, with each mode separately normalized by its maximum absolute value.
The small dataset illustrated in the top row has resolution ∆R≈ 37 cm, ∆φ= 45o. In the
bottom row, ∆R≈ 0.8 cm, ∆φ= 11.25o. The sparsity-promoting method captures the vast
majority of the spatial structure for each mode even with the small dataset. Fine-scale
structure in the kink instability is not captured with the small dataset. The relative mode
amplitudes, rather than the amplitudes normalized by their maxima, can be found in Fig. 4.8.
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Figure 4.6: 3D snapshots of B̃z
nφ=2 from BIG-HIT simulations illustrate a dynamic spiral

structure that penetrates down the core and edge of the device, and connects through the
injector mouths. Corresponding 2D contour plots at Z = 0 of the same simulation data
indicate that much of this structure is oscillating roughly at f inj

2 , thereby connecting the f inj
2

mode found in the DMD analysis in Chapter 4 with a physical structure with the correct
nφ = 2 dependence. Lastly, a comparison at Z = 0 between the simulation data B̃z

nφ=2 and

the sparsity-promoting DMD reconstruction using f inj
2 shows that much of the fine-scale

structure can be captured correctly by sparsity-promoting DMD.
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In the equation above, R1 ≈ 0.9 m is the radius which satisfies q(R1)≈ 1, and rough estimates

from the previous BIG-HIT analysis yield q′(R1)≈∆q/∆R≈ 0.05/0.05 = 1 and Bθ(R1)≈

100 G. Evaluating with these values gives ν11 ≈ 1000 s−1.

Optimized DMD captures an (nφ, mθ) = (1, 1) instability and obtains its growth rate

for both datasets in the window 26.8 ms ≤ t≤ 27.1 ms. This phenomenon is robust for

a range of SVD truncation ranks from 10≤ r ≤ 50; when r < 10, the fit does not capture

the exponential growth, and when r > 50 the poor initial guess results in convergence to a

sub-optimal minimum. For values of 10≤ r ≤ 50, νkink ≈ 600− 1100 s−1 using 5120 internal

measurements, and νkink ≈ 600− 2000 s−1 using 24 measurements, in excellent agreement

with the estimate of ν11 ≈ 1000 s−1.

To account for some models resulting in many growing modes, only modes with νj > 100

s−1 are retained; the major spheromak or injector modes are often below this threshold.

Any modes oscillating within 1 kHz of the injector frequency are also rejected, in an attempt

to control for modes directly driven by the injectors, which are known to have a nφ = 1

structure. The growth rate reported is the weighted average of the remaining growing modes.

To validate this approach, the other two kink events observed in the full window 22.7 ms

≤ t≤ 28.5 ms are analyzed. Again, the results indicate growth rates νkink ≈ 500− 2000 s−1

and similar spatial dependence.

The toroidal and poloidal Fourier decompositions of the modes, reported in Fig. 4.8,

indicate an (nφ, mθ) = (1, 1) structure, and the contour plots in Fig. 4.5 illustrate dominant

nφ = 1 dependence in the closed flux region. The surface probes indicate an mθ = 1 structure

of the instability in Fig. 4.8, despite the broad spectrum. With the low-resolution dataset,

the surface probes exhibit dominant nφ = 4 dependence. Many of the surface probe signals

have barely perceptible changes during the transient instability, and thus it is reasonable that

the spatial dependence of the instability cannot be consistently identified with these probes.

The surface probe decomposition exhibits a dominant nφ = 1 structure for the high-resolution

dataset, which may be consistent with additional probes resulting in a better representation

of the magnetic field dependence of the instability.
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Figure 4.7: Poincaré plots, generated using the full simulation data on the midplane at four
consecutive instances, illustrate the evolution of the resistive kink instability.
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Originally, it appeared possible that the injectors directly drive the nφ = 1 kinking, but

this analysis suggests that plasma generated activity is responsible. Another simulation using

a set of four injectors (two each on top and bottom) driving a primarily nφ = 2 magnetic

structure, indicates periods of closed flux followed by an opening of the flux surfaces by a

nφ = 1 kink. This lends further evidence to identification of this kink mode independent of

the primary injector magnetic configuration.

4.5 Conclusions from DMD work

The sparsity-promoting and optimized variants of the dynamic mode decomposition have

been shown to enable the discovery of magnetic structures from a sparse set of measurements

of a driven spheromak. Spatio-temporal modes corresponding to the injector harmonics were

identified, along with the characterization of a resistive (1, 1) kink instability. Further, the

evolution of these modes is accurately captured by a low-rank, interpretable, and linear

model, demonstrating the potential for forecasting and real-time control. Importantly, the

effectiveness of DMD was demonstrated on data from both the HIT-SI experiment and

accompanying BIG-HIT simulations.

The sparsity-promoting DMD is shown to provide an interpretable and physical model

of the major magnetic modes, while avoiding overfitting. The f inj
1 structure corresponds to

the dominant part of the driven injector fields. The f inj
2 mode on the midplane was used to

uncover a previously unobserved 3D structure in the simulation that oscillates at f inj
2 , has

nφ = 2 toroidal Fourier dependence, and spirals through the injectors near the boundary of

the device. A very similar-looking mode was also observed during the nonlinear relaxation

phase of the HIT-SI simulations in Sec. 2.3.4.

The optimized DMD demonstrates more accurate signal reconstruction that may be use-

ful for forecasting and characterizing smaller-scale coherent structures. Unlike the other

methods, the optimized DMD enables the full characterization of a resistive kink instability

on a small time window, indicating the ability for robust data-driven identification of MHD

instabilities, with implications for real-time control. If both the discovery of interpretable
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dynamics and the accurate characterization of instabilities is desired, a joint use of both the

sparsity-promoting and optimized DMD algorithms may be useful, as illustrated here.

While this chapter has focused on magnetic measurements from a number of simple

probes, in principle, these methods only rely on a set of sparse experimental measurements

of any relevant plasma quantity. Thus, they should be highly applicable to a wealth of

different diagnostics and plasmas spanning much of the possible parameter space. Although

all reduced-order methods discussed here result in global spatial modes, the analysis can

be restricted to small-scale spatial structures by using a small number of nearby probes.

Despite the localization of the resistive kink instability near the closed flux, it was successfully

identified with these methods by radially averaging over the internal probe arrays, and

visually confirming the nφ = 1 structure in the closed flux region. To capture transient

modes such as the resistive kink identified in this paper, the methods can be applied on

a small time window. This flexibility and generality make DMD an excellent choice for

the discovery of coherent plasma structures and instabilities, and subsequent attempts to

control them. For similar reasons, SSI is also increasingly used for modal analysis in the

plasma physics community.

There are also a number of existing techniques that are specific to a certain class of dynam-

ics arising in plasmas. For instance, bispectral analysis [218, 369] has traditionally been used

for the identification and analysis of nonlinear wave interactions. For plasmas with important

small-scale and transient turbulent structures, the (bi)orthogonal wavelet decomposition and

reduced-order methods based on wavelets [121], such as multi-resolution DMD [236, 276] and

multi-resolution biorthogonal decomposition [286], show significant promise. These methods

would be ideal for the analysis of coherent structures with small spatial and temporal cor-

relation lengths. The DMD framework has several other extensions that may improve the

analysis of complex experimental plasmas, which often have limited measurements, complex

multi-scale dynamics, and actuation. Other promising models for mapping nonlinear dy-

namics onto approximate linear representations are the many variants for approximating the

Koopman operator [61, 62]. Discovering the underlying coherent structures also facilitates
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Figure 4.8: Averaged toroidal mode content 〈B̃θ
nφ
〉 of the surface and internal probes for

the f0, f inj
1 , f inj

2 , f inj
3 , and fkink DMD modes is shown for the two datasets (recall that

both datasets have 192 surface probes but the small dataset has only 24 internal probes,
while the large dataset has 5120 internal probes). The surface probe decomposition in the
toroidal direction is in excellent agreement with the internal probe data except for the low-
resolution kink mode. This illustrates the global structure of f0, f inj

1 , f inj
2 , f inj

3 and the
local spatial structure of the instability near the closed flux region. The f0 mode is almost
purely characterized by nφ = 0, reaffirming the physical interpretation of an axisymmetric
spheromak. Modes f inj

1 and f inj
3 indicate dominant odd nφ structure, which is expected

because the injectors are driven to produce a mostly nφ = 1 magnetic structure. Interestingly,
mode f inj

2 shows significant mode content in the even nφ numbers. The instability fkink is
observed in both datasets to have a (1, 1) structure. Magnitude disagreements between the
datasets are a result of differences in the number and locations of the probes.
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control [58]. The DMD algorithm has been previously extended to decompose signals while

disambiguating the system dynamics from the effects of external forcing. This is ideal for

discovering and then controlling plasma-generated dynamics. In fact, DMD with control

(DMDc) has shown significant promise for externally forced systems [353, 310, 140]. For

the purposes of this work, it was found that performance was similar when injector current

waveforms were treated as actuators because the forcing is actually the primary dynamics in

the system after the equilibrium is subtracted off. However, for other experimental devices,

accounting for external actuation through DMDc or SSI may significantly improve discovery

of plasma dynamics.

For reduced-order models, another clear direction for improvements over the traditional

DMD is to extract nonlinear ROMs from data. In the next chapter, a popular system

identification method is discussed that will allow for the identification of nonlinear ROMs

with physical constraints, constraints from nonlinear stability theory, and other robustifying

features.
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Chapter 5

SPARSE SYSTEM IDENTIFICATION
FOR PLASMAS AND FLUIDS

Increasingly, reduced-order models of complex systems, such as fluids and plasmas, are

discovered from data with modern machine learning algorithms [393, 371, 295, 202, 59,

222, 376, 100, 257, 425, 108, 360, 344, 25, 114, 356, 8, 339, 354, 211, 251, 243, 172, 381,

226, 212], rather than classical projection-based methods that are intrusive and may require

substantial knowledge of the governing equations. These data-driven approaches for modeling

fluid dynamics [53, 65] range from generalized regression techniques [393, 59, 257] to deep

learning [114, 243, 251, 381, 226, 361].

As illustrated in Chapter 3, one can project the high-dimensional MHD (or kinetic equa-

tions [318]) onto a low-dimensional basis in order to obtain an analytic ROM, although the

high-dimensional simulations may still be mostly required for computing the coefficients ap-

pearing in the ROM. Chapter 4 showed that linear data-driven models can be extracted

directly from data without assumption about the underlying governing equations. This can

be quite useful when the underlying equations are unknown. The linear approximation makes

this approach sub-optimal for much of nonlinear plasma dynamics, although the errors in this

approximation can be somewhat addressed through local linearization, very high diagnostic

sampling rates, sliding windows, and other more robust variants of DMD.

This chapter combines these two ideas, namely that: (1) analytic POD-Galerkin-type

models can be computed from MHD and (2) it is often useful to find nonlinear models

directly from data. First, the extraction of nonlinear governing equations from data is

reviewed. Second, the focus is shifted from directly extracting the MHD or kinetic equations

from the data (although this is an interesting line of work [8], especially for data-driven
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using physics-constrained system identification.

closure models), but rather extracting data-driven ROMs that approximate the MHD or

kinetic equations. In other words, these nonlinear system identification methods will be

used to directly discover POD-Galerkin models of the form in Eq. (3.12). The utility is that

one can obtain very low-dimensional ROMs directly from the data and need not rely on

high-resolution experimental or simulation datasets, which may not be available or may not

exhibit the requisite resolution for calculating analytic ROMs.
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5.0.1 Sparse Identification of nonlinear dynamics

The sparse identification of nonlinear dynamics (SINDy) method is a system identification

technique for extracting governing equations from data. Empirically, dynamical systems are

often well-described by ODEs or PDEs that are sparse, i.e. containing only a few active terms

that dominate the dynamical evolution. The SINDy method discovers governing dynamical

systems models of the form
d

dt
q(t) = f(q(t)). (5.1)

Given data in the form of state measurements q(t) ∈ RN , SINDy identifies a model for the

dynamics, given by the function f , which describes how the state of the system evolves in

time. In particular, SINDy sparsely approximates the dynamics in a library of candidate

basis functions θ(q) = [θ1(q), θ2(q), . . . , θpΘ
(q)], so that

f(q)≈
pΘ∑
k=1

θk(q)ξk. (5.2)

In order for this strategy to be successful, a reasonable approximation of f(q) must lie in

the span of θ. Therefore, background scientific knowledge about expected terms in f(q)

can be used to choose the library θ. To pose SINDy as a regression problem, time-series

measurements of q and the corresponding time derivatives q̇ are arranged into matrices

X =


q1(t1) q2(t1) · · · qN(t1)

q1(t2) q2(t2) · · · qN(t2)
...

...
. . .

...

q1(tM) q2(tM) · · · qN(tM)


, Ẋ =


q̇1(t1) q̇2(t1) · · · q̇N(t1)

q̇1(t2) q̇2(t2) · · · q̇N(t2)
...

...
. . .

...

q̇1(tM) q̇2(tM) · · · q̇N(tM)


.

Note that X has been redefined as the transpose of the original data matrix in Eq. (3.3). If

X contains measurements with differing units, normalization or dimensionalization to energy

units [373, 211] can improve the following sparse regression performance.
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The derivatives q̇i(t) can be approximated numerically or measured directly. The li-

brary functions are evaluated on the data, resulting in a candidate library of pΘ terms,

Θ(X) = [θ1(X), θ2(X), . . . , θpΘ
(X)] ∈ RM×pΘ . Sparse regression is then performed to ap-

proximately solve the minimization problem

argmin
Ξ

[
1

2
‖Ẋ −Θ(X)Ξ‖2 + λRs(Ξ)

]
, (5.3)

where Ξ ∈ RpΘ×N is a set of coefficients that determines the active terms in f and Rs(Ξ) is

a regularizer that biases the optimization towards sparse models. Although the traditional

method uses X and Ẋ, in principle Ẋ can be replaced by any matrix. For instance, for the

wave equation one can use Ẍ and for steady-state problems one might use a polynomial term

such as X2. The goal is to determine the coefficients that solve the optimization problem,

Ξ =
[
ξ1, ξ2, · · · , ξpΘ

]
, also written in vectorized form as Ξ[:] = ξ.

SINDy has been widely applied for model identification in applications such as chemi-

cal reaction dynamics [175], chemical networks [306], chemical processes [40, 387], biologi-

cal transport [237], disease transmission [195], convective heat transfer [459], nonlinear op-

tics [404], power systems [408], traveling waves [287], materials science [64], hydraulics [311],

human behavior models [99], fluid dynamics [257, 259, 256, 117, 83, 108, 130], turbulence

modeling [392, 29, 30], plasma physics [100, 211, 8], structural modeling [238], coupled

aeronautic-structural systems [250], among others [311, 105, 337]. It has also been extended

to handle more complex modeling scenarios such as PDEs [384, 376], stochastic differential

equations [221, 55, 71], systems with inputs or control [204, 203, 122], systems with implicit

dynamics [273, 201], hybrid systems [272, 422], to enforce physical constraints [257, 82, 211],

to incorporate information theory [274] or global stability [209], to identify models from

corrupt or limited data [426, 386, 107] and ensembles of initial conditions [449], to perform

cross-validation with ensemble methods, and extending the formulation to include integral

terms [385, 365, 291], tensor representations [135, 137], and stochastic forcing [48].

To use this method in conjunction with the methods discussed in Sec. 3, consider discov-
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ering the POD-Galerkin models (systems of ODEs) for fluid and plasma models with this

method. In that case, attention can be primarily focused on models that are quadratic in

nonlinearity. As in Loiseau et al. [257], SINDy models for the dynamics of q = a are devel-

oped, so that the dimension N = r here, and a represents the coefficients or amplitudes of a

modal Galerkin expansion in Eq. (3.2).

Throughout, this work deviates from the typical SINDy definitions by explicitly formu-

lating the problem in terms of the vectorized ξ ∈ RrpΘ , Θ(X) ∈ RrM×rpΘ , and Ẋ ∈ RrM ,

argmin
ξ

[
1

2
‖Θξ − Ẋ‖2

2 + λRs(ξ)

]
. (5.4)

The first term in the SINDy optimization problem in Eq. (5.4) fits a system of ODEs Θξ to

the given data in Ẋ. The Rs(ξ) term is typically chosen to be the l0 norm, ‖ξ‖0, which counts

the number of nonzero elements of ξ. The elements of ξ smaller than a threshold value, λ, are

zeroed out. However, it is not technically a norm and leads to a non-convex optimization, so

several convex relaxations have been proposed [59, 376, 458, 82, 457]. However, one can see

that Eq. (5.4) does not rely on any specific physical principles beyond fitting the data and

producing a model with a desired level of sparsity. In general, one would like to incorporate

physical constraints directly into this optimization, so that models found with this technique

a priori satisfy any known physical laws.

5.1 Constrained system identification

It is rare that a scientist knows nothing about a dynamical system of interest, and there a

number of benefits that come from incorporating physical laws, priors, or constraints into

system identification: (1) the identified models a priori satisfy the constraints, (2) extra

constraints reduce the space of possible models, presumably restricting the models to a more

physical subset, (3) there are a number of constraints that one would like to hold with high

numerical precision, i.e. in magnetic field data it might be useful to prescribe ∇ ·B = 0

or at least ∇ ·B ≤ εB for some small parameter εB, and (4) training data requirements
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are typically reduced. Fortunately, there are a number of modern techniques to implement

general constraints of the form

Ci(Ẋ,X, t, ...)≤ 0, i ∈ {1, 2, ...} (5.5)

into both model reduction [242, 388] and system identification [257, 228, 82, 407].

Since the original SINDy algorithm, Loiseau et al. [257] introduced an extension to

directly enforce constraints on the coefficients in ξ. In particular, they enforced energy-

preserving, skew-symmetry constraints on the quadratic terms for incompressible fluid flows,

demonstrating improved model performance over standard Galerkin projection. For a SINDy

library with constant, linear, and quadratic terms, there are a total of pΘ = 1
2
(r2 + 3r) + 1

term. With the energy-preserving structure in the quadratic nonlinearities, as in Eq. (3.21),

it can be shown that the number of constraints is NQ = r(r + 1)(r + 2)/6 and therefore the

number of free parameters is rpΘ −NQ = 2pΘ. The constraint must also be converted into

the SINDy formatting and this is done explicitly for arbitrary r in Appendix A. Recall that

there is also an additional constraint on the linear parts of the model, Eq. (3.20), for fully

energy-preserving plasma flows. All of the constraints are encoded together as Csξ = d,

Cs ∈ RNQ×rpΘ , d ∈ RNQ , and the constrained SINDy algorithm solves the following mini-

mization,

argmin
ξ

[
1

2
‖Θξ − Ẋ‖2

2 + λ‖ξ‖1 + δ0(Csξ − d)

]
. (5.6)

In general, nonconvex regularizers can be used to promote sparsity in ξ. However, modifica-

tions to Eq. (5.6) in Sec. 5.5 require a convex regularizer, so the remainder of this chapter

uses the L1 norm. The third term δ0 is an indicator function that encodes hard constraints

Csξ = d. This term can be modified to use inequalities for imposing softer constraints. There

are also variants of the constrained SINDy objective function in Eq. (5.6) that utilize sparse

relaxed regularized regression (SR3) in order to improve performance [458, 82].
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5.2 Initial constrained system identification results with 3D MHD simulations

The theoretical structure of this data-driven modeling framework is appealing, but its value

to the community ultimately depends on the quality of the analysis when applied to plasma

systems. Guided by the theory, a nonlinear, physics-constrained SINDy model is constructed

for an isothermal Hall-MHD simulation of the HIT-SI experiment, described below.

5.2.1 HIT-SI simulations used for nonlinear system identification

Simulations of HIT-SI were performed using the Hall-MHD equations and solved by the

NIMROD code [405]. Dirichlet boundary conditions for the variables include the plasma

density ne = 2× 1019 m−3 and the temperatures Ti = Te = 14 eV. Isotropic viscosity ν = 550

m2/s and Spitzer resistivity [406] is used. The remaining boundary conditions are u× n̂=

u · n̂= 0, J · n̂= 0, and B · n̂= 0. For additional information on the numerical model see

Sec. 2.2.2. The data for training and testing are obtained during the approximately steady-

state phase of the simulation so that the energy constraints in Equations (3.20) and (3.21)

are applicable.

The density, velocity, and magnetic field are sampled at a set of equally-spaced 3D points

in the volume and sampling intervals ∆φ= π/16, ∆R≈∆Z ≈ 2 cm. The result is that each

component of u and B has 47712 samples. This high-resolution is ideal for visualization but

substantial size reduction can be done with little or no change to the spatial or temporal

POD modes. For instance, in Figures 3.1 and 5.2b, the Z = 0 visualizations of the 3D spatial

POD modes are constructed from the 1440 sample locations at Z = 0; with a non-uniform

set of 50 points in the midplane, the only change to the visualization is a smoothing out

of the shortest wavelengths. The temporal resolution of the measurements is ∆tk = 1 µs.

The analysis is essentially unchanged for time steps as large as 10 µs, but smaller time steps

are required in HIT-SI to resolve harmonics of the injector frequency that appear in the

temporal POD modes in Fig. 3.1. For instance, at ∆tk = 10 µs, the fourth injector harmonic
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is sampled, on average, less than twice per period.

5.2.2 Results of constrained system identification

From these measurements of the density, velocity, and magnetic field, the topos and chronos

are computed via the SVD in Eq. (3.4), obtaining a Galerkin expansion for the velocity and

magnetic fields in magnetic field units, as in Eq. (3.6). Now a constrained SINDy model is

identified for the first 16 chronos ai(t) and the forecasting is illustrated in Fig. 5.2a. The

SINDy model accurately captures most of the aj(t) dynamics, with larger errors for the

less energetic modes. Some of the low-frequency content in the aj(t) is not captured by

this particular constrained SINDy model, but this is largely because the low frequencies

are not well-resolved in the time range used for training. Despite this deficiency in the

data, the SINDy model illustrates strong prediction performance in the Z = 0 midplane

reconstructions of the simulation data in Fig. 5.2b and forecasts much of the time evolution

for a high-dimensional simulation that used 589, 824 grid points, a tremendous efficiency

gain of O(105). Furthermore, this model was obtained by training on a dataset representing

a single discharge. Further improvements are likely accessible by training on a dataset of

many discharges of varying trajectories.

A quality forecasting model has been found from the SINDy system identification method,

but it is interesting to see how the model quality varies with the algorithm hyperparameters

like the model sparsity λ and model rank r. Figure 5.3 illustrates how the normalized recon-

struction errors of X and Ẋ vary in the “Pareto-space” of (r, λ) for both the unconstrained

and constrained SINDy algorithms, with the goal to explore the space of possible models

obtained from this system identification technique. Although the exact reconstruction error

values are unique to the simulation examined here, there are some interesting qualitative

features that are expected to be quite general. The unconstrained SINDy algorithm indi-

cates a significant region of (r, λ) where numerically unstable models are found. For r ' 10,

the models are typically either unstable or too sparse to be effective for forecasting. In

contrast, by construction the constrained SINDy algorithm fully conserves the energy and
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(a) (b)

Figure 5.2: Summary of the constrained SINDy performance on a 3D Hall-MHD simulation
of the HIT-SI device described in Sec. 2.1. (a) Constrained SINDy prediction of a1, ..., a16.
The true evolution is in gray, the training data used for the model-finding is in blue, and
the SINDy prediction is in red. (b) Constrained SINDy predictions of the z-component of
u (Test) in the Z = 0 midplane are compared with the true evolution at three snapshots in
time, indicating strong algorithm performance.
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therefore exhibits no unstable models. This is promising for discovering models on histori-

cally challenging systems for machine learning methods − multi-scale or turbulent systems

that require r� 1 to properly capture the dynamics. At first glance, it may appear that the

constrained SINDy errors in Ẋ are worse than the unconstrained errors, but the low-error

values in the unconstrained case are precisely the unstable models. These nonsparse models

are overfitting, leading to instability in the numerical integration. Finally, one can see that

at λ≈ 0.091, all the SINDy models are rendered ineffective. This value is precisely at the

driving frequency of the HIT-SI injectors in this simulation; if λ is larger than this frequency,

SINDy thresholds off the primary dynamics in the system.

5.3 Stability-promoting system identification

It is often possible to improve the stability and performance of data-driven models by incor-

porating partially known physics, such as conservation laws and symmetries [257, 211, 212],

or known physical structure [97]. Physics can be incorporated into machine learning algo-

rithms through model structure, by augmenting training data with known symmetries, by

adding constraints to the optimization as was done in the previous section, or by adding

custom loss functions [65]. Thus, incorporating physics into machine learning and devel-

oping hybrid data-driven and operator-based approaches are rapidly growing fields of re-

search [269, 24, 347, 257, 451, 359, 298, 325, 242, 97]. However, even physics-informed

data-driven models often lack global stability guarantees, and the ability of these methods

to find long-term bounded models typically depreciates as the state dimension increases. In

this section, this issue is addressed by promoting stability guarantees during system iden-

tification. The work presented in Sections 5.3−5.7 has also been published as a paper in

Kaptanoglu et al. [209].

5.4 The Schlegel and Noack trapping theorem

To address the issue of instability in analytic POD-Galerkin models, Schlegel and Noack [390]

developed a “trapping theorem” with necessary and sufficient conditions for long-term model
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Figure 5.3: Summary of the (r, λ) space of unconstrained and constrained SINDy models from
the HIT-SI simulation. The unconstrained models approximately separate into three distinct
classes. Class I illustrates nonsparse and typically unstable models. Class II consists of
sparse and accurate solutions. Class III denotes solutions which are too sparse to accurately
capture the dynamics. Computed errors are for the testing part of the dataset; the colorbar
(see online version for color) is limited to 101 as unstable model errors grow arbitrarily
large. Constrained SINDy guarantees the energy norm is preserved and thus class I vanishes.
Algorithmic advances of the type described in Chapter 6 can likely further expand the size
of class II.
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Figure 5.4: Left: Decision diagram to determine global stability, modified from Schlegel and
Noack [390] and described in Section 5.4. Right: Illustration of a trapping region (blue
sphere) for the Lorenz system; all outside trajectories monotonically approach this region,
and after entering, remain inside. Trajectories inside the red ellipsoid experience positive
energy growth, in this case precluding convergence to a fixed point.

stability for systems that exhibit quadratic, energy-preserving nonlinearities. This theorem

can be used as an effective post-hoc diagnostic to examine whether a ROM is globally stable.

The trapping theorem provides conditions for the existence of a global trapping region,

towards which every system trajectory asymptotically and monotonically converges; once a

trajectory enters this region, it remains inside for all time, guaranteeing that all trajectories

are bounded. These types of guarantees are ideal for the application of real-time flow-control

strategies. An example trapping region is illustrated by the blue sphere in Fig. 5.4 for the

Lorenz system. For convenience, the terms “global stability”, “long-term boundedness”, and

“monotonically trapping region” will be used interchangeably, although systems exhibiting

trapping regions are a strict subset of globally stable systems (see Fig. 1 of Schlegel and

Noack [390] for a useful organizational diagram of these various notions of stability).

In this section, the Schlegel and Noack [390] trapping theorem is used to diagnose and

promote global stability of data-driven models with quadratic nonlinearities. Even though
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their theorem was developed in the context of projection-based ROMs, it is important to

emphasize that it can be applied directly to analyze data-driven model stability post hoc, and

this work examines the conditions under which it holds. Next, this theorem is used to promote

global stability in machine learned models by modifying the optimization loss function. This

approach is illustrated with constrained SINDy, i.e. Eq. (5.6), by implementing an additional

custom optimization loss term that promotes models that are globally stable by construction.

Constrained SINDy generally produces more stable models than unconstrained SINDy, and

reflects a broader trend that stability issues can often be improved by building physical

constraints into system identification methods [257, 82].

The “trapping SINDy” algorithm generalizes previous stabilized or constrained reduced-

order models for fluids by considering global rather than local stability, allowing for both

transients and long-time attracting sets. Promoting global stability also improves robustness

to noise over unconstrained or constrained SINDy. Recent works by Erichson et al. [119] and

Sawant et al. [383] promote a more restrictive locally, asymptotically stable origin in fluid

flows by adding similar loss terms to the optimization problem. Additionally, much of the

literature has focused on the long-time energy properties of a dynamic attractor [22] by either

prescribing that the system be fully energy-preserving (or Hamiltonian) [20, 80, 348, 3, 41, 90]

or applying real-time control [241]. Mohebujjaman et al. [298] also used a simple version

of the trapping theorem in order to constrain a hybrid projection-based and data-driven

method; they promote global stability by requiring that the system be globally dissipative

everywhere. This chapter builds on these studies, providing a framework for addressing the

long-standing challenge of promoting global stability in data-driven models and summarizing

the work in Kaptanoglu et al. [209].

This section is additionally motivated because there are many scenarios under which

energy-preserving quadratic nonlinearities can arise. In fluid dynamics, the quadratic non-

linearity often represents the convective derivative (u · ∇)u in the Navier-Stokes equations.

This quadratic nonlinearity is energy-preserving for a large number of boundary conditions.

Examples include no-slip conditions, periodic boundary conditions [283, 177], mixed no-slip
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and periodic boundary conditions [378], and open flows in which the velocity magnitude

decreases faster than the relevant surface integrals expand (e.g., two-dimensional rigid body

wake flows and three-dimensional round jets) [391]. In magnetohydrodynamics, there are

additional quadratic nonlinearities through ∇× (u×B) and J ×B, which are also energy-

preserving with common experimental boundary conditions such as a conducting wall [127],

or a balance between dissipation and actuation in a steady-state plasma device, as illustrated

in Eq. (3.19).

To begin, the Schlegel and Noack trapping theorem is reviewed in order to understand the

circumstances under which it holds and how to incorporate it into system identification. This

theorem provides necessary and sufficient conditions for energy-preserving, effectively non-

linear, quadratic systems to exhibit a trapping region B(m, Rm), a ball centered at m ∈ Rr

with radius Rm. Outside this region the rate of change of energy K̇ is negative everywhere,

so that the energy K̇ is a Lyapunov function that renders this system globally stable. Recen-

tering the origin by an arbitrary constant vector m, the energy may be expressed in terms

of the shifted state vector y(t) = a(t)−m as

K =
1

2
yTy. (5.7)

Taking a derivative and substituting in Eq. (3.12) produces

d

dt
K = yTASy + dTmy, (5.8)

AS =LS −mTQ, LS =
1

2
(L+LT ), and (5.9)

dm =C +Lm+Qmm, (5.10)

where Eq. (3.12) has been used, mTQ refers to miQijk, and Qmm refers to Qijkmjmk. The

trapping theorem may now be stated as:
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Theorem 1. There exists a monotonically trapping region at least as small as the ball

B(m, Rm) if and only if the real, symmetric matrix AS is negative definite with eigenvalues

λr ≤ · · · ≤ λ1 < 0; the radius is then given by Rm = ‖dm‖/|λ1|.1

In practice, the goal is then to find an originm so that the matrixAS is negative definite,

guaranteeing a trapping region and global stability. Without effective nonlinearity, described

at the beginning of Section 5.4.1, only the backwards direction holds; if one can find an m so

that AS is negative definite, the system exhibits a trapping region. However, such systems

can be globally stable without admitting such an m. Subsequently, the goal of Section 5.5

is to use this theorem to define a constrained machine learning optimization that identifies a

reduced-order model with a guaranteed trapping region. Even when the requirements of the

trapping theorem are not fully satisfied, the algorithm results in Section 5.6 indicate that

this approach tends to produce models with improved stability properties.

To understand the Rm bound in Thm. 1, y is transformed into eigenvector coordinates

z = Teigy, heig = dmT
T
eig, where Teig are the eigenvectors of AS. Now Eq. (5.8) becomes

d

dt
K =

r∑
i=1

heig
i zi + λ̃iz

2
i =

r∑
i=1

λi

(
zi +

heig
i

2λi

)2

− (heig
i )2

4λi
. (5.11)

One can see that the trapping region will be determined by the equation of the ellipsoid

where K̇ = 0,

1 =
r∑
i=1

1

α2
i

(
zi +

heig
i

2λi

)2

, (5.12)

αi ≡
1

2

√√√√ 1

λi

r∑
j=1

(heig
j )2

λj
≤ 1

2|λ1|
‖dm‖. (5.13)

The origin at y = 0 (a=m) lies on the ellipsoid, and in the worst case scenario lies at

1If a system is long-term bounded (not necessarily exhibiting a monotonically trapping region) and
effectively nonlinear, only the existence of an m producing a negative semidefinite AS is guaranteed.
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the tip of the major axis. Thus, to guarantee that a ball centered at this origin entirely

contains this region, Rm is estimated as twice the size of the largest possible value of the

half-axes αi. Note that this definition of αi differs from Schlegel and Noack [390] due to a

minor typo in their Eq. 3.14. Fortunately, the only consequence is a change in the estimate

of Rm. Lastly, recall that long-term bounded (not necessarily exhibiting a monotonically

trapping region) and effectively nonlinear systems only guarantee an m exists such that AS

is negative semidefinite. In the case of mixed zero and nonzero eigenvalues, the ellipsoid

becomes a paraboloid. The infinite extent of the paraboloid precludes a monotonic trapping

region but not other forms of global stability. This edge case is not further discussed because

in practice (numerically) there is no chance of arriving at an eigenvalue of exactly zero.

5.4.1 Interpretation of the trapping theorem

The Schlegel and Noack [390] theorem, summarized in Theorem 1, provides necessary and

sufficient conditions for the projected ROM in Eq. (3.12) to be globally stable by admitting

a trapping region. This theorem is necessary and sufficient for systems that exhibit effective

nonlinearity, i.e., the system does not manifest invariant manifolds where there exists some

i such that Qijkajak = 0 for all time, for which a linear stability analysis must be adopted.

In other words, systems that start in purely linear model subspaces, and remain in those

subspaces, do not exhibit effective nonlinearity − the quadratic part of the model never

“turns on”. Fortunately, realistic fluid flows exhibit effective nonlinearity, although there

are some subtleties that are discussed in Section 5.4.2. In this case, one can always use

the total fluid kinetic energy K as a Lyapunov function for the trapping region. This is

ideal, as finding a suitable Lyapunov function is often the most difficult task in stability

analysis. It is possible that other Lyapunov functions exist with tighter bounds on the size

of a trapping region, but this section is primarily concerned with promoting models with

long-term boundedness (i.e. models that exhibit a trapping region of any kind), rather than

an algorithm for precisely capturing the shape and size of a trapping region. For a post-fit

algorithm to find the optimal ellipsoidal estimate of the stability domain, see Kramer [231]
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or the stability analysis work in Kalur [205, 206].

A generic nonlinear system may exhibit multiple fixed points, limit cycles, and other

equilibrium point behavior. However, any physical system should produce bounded trajec-

tories, and in principle the global stability property from the trapping theorem is agnostic

to any local stability properties. Sections 5.4−5.7 solely considers systems that are glob-

ally stable, or equivalently, long-term (ultimately) bounded, by virtue of exhibiting globally

trapping regions. Long-term boundedness means that there exists some T0 and R0 such that

‖a(t)‖<R0 for all t > T0. A trapping region encompasses an attractor or attracting set,

which is typically defined as a set of the system phase space that many trajectories converge

towards; this can be an equilibrium point, periodic trajectory, Lorenz’s “strange attractor”,

or some other chaotic trajectory. Whenever it does not detract from the discussion, the

qualifiers “globally”, “monotonically” and “long-term” are omitted, as this is the only char-

acterization of stability considered in Sections 5.3−5.7. Examples of physical systems that

are globally stable but do not exhibit a trapping region include Hamiltonian systems and

systems that do not fit into the trapping theorem assumptions (examined further in Sec-

tion 5.4.2 and summarized in Fig. 5.4). For instance, fully energy-preserving systems satisfy

K̇ = 0, so trajectories represent shells of constant distance from the origin. These trajectories

are globally bounded but no trapping region exists.

5.4.2 Model truncation, effective nonlinearity, and closure

Before implementing the trapping theorem into system identification, the circumstances

under which truncated projection-based models ( such as those described in Chapter 3)

will exhibit effective nonlinearity are investigated; the reader may skip this section if the

subtleties of the trapping theorem are not of interest, although the discussion here is pertinent

to Section 5.6. Effectively nonlinear dynamics are ideal because they can be decisively

classified as globally stable or not, requiring no additional stability analysis. To clarify an

important circumstance in which effective nonlinearity is not satisfied, consider a Fourier-
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Galerkin model of the 1D Burgers’ equation derived from the Fourier expansion q(x, t) =∑
k ak(t)e

ikx, and further examined in Section 5.6,

q̇ =−q∂xq + ν∂xxq =⇒ ȧk =−νk2ak −
∞∑

`=−∞

i`a`ak−` (5.14)

=⇒ K̇ =−ν
∞∑

k=−∞

k2a2
k −

∞∑
k,`=−∞

i`a`ak−`ak. (5.15)

The particular “triadic” structure of the nonlinear term in the spectral domain, where the

only nonzero terms acting on ak are those whose wavenumbers sum to k, is identical to that

arising in isotropic turbulence [420]. The triadic term in K̇ transfers energy between length

scales. Since the viscous term scales with k2, energy is most effectively dissipated at the

smallest scales; the combination of the two terms leads to the traditional energy cascade

in which energy flows “downhill” from larger to smaller scales. This description implies

that heavily truncating the Galerkin system leads to under-resolving the dissipation rate

and a closure scheme may be required to re-introduce the full dissipation. Towards this goal,

modern sparse regression and deep learning methods have been used to produce new closures

for dynamical models [253, 380, 338, 114, 281, 29, 19]. While the traditional explanation

for unstable Galerkin models derives from these truncated dissipative scales, increasingly

there are alternate explanations including fundamental numerical issues with the Galerkin

framework (potentially resolved in a Petrov-Galerkin framework) [149] and the Kolmogorov

width issues of linear subspaces more generally [243]. If true, this is probably good news for

(incompressible, dissipationless) Hall-MHD, in which additional invariants can lead to very

complicated turbulent cascades. Interestingly, the notion of effective nonlinearity appears to

be another approach from which one can attempt to resolve these disagreements about the

sources of ROM instability.

To proceed with this theme, it is shown that the triadic structure of the model has

repercussions for the presence of effective nonlinearity. Consider a truncation of the model
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in Eq. (5.14),

ȧk =−νk2ak −
r∑

`=−r

i`a`ak−`, k ∈ {1, ..., r}, (5.16)

with the initial condition aj = 1 for any j ∈ {±( r
2

+ 1),±( r
2

+ 2), ...,±r}, and ak = 0, k 6= j.

For simplicity it is assumed here that r is divisible by two. In this case the system has r

invariant 1D subspaces for which

ȧj =−νj2aj. (5.17)

These invariant linear subspaces exist because higher wavenumber modes that could interact

to transfer energy between coefficients have been discarded. In other words, Fourier-Galerkin

models with finite truncation do not exhibit effective nonlinearity. In contrast, POD-Galerkin

models weakly break the triadic structure of the nonlinearity [96], and therefore in general will

weakly satisfy the trapping theorem criteria for effective nonlinearity, to the extent that they

differ from the Fourier modes because of inhomogeneity in the system. There are also modern

ROMs which attempt to retain the full dissipation by utilizing bases that intentionally mix

length scales [21] – these types of models should be more likely to satisfy effective nonlinearity.

Lastly, numerical errors appear to weakly restore effective nonlinearity, since errors break

any triadic structure. Proceeding with this analysis is complicated because the numerical

errors also weakly break the foundational assumption that Qijk is energy-preserving. Future

investigations should be pursued to explore relationships between effective nonlinearity, the

energy cascade, and closure models that reintroduce stabilizing dissipation to truncated

models.

It is difficult to quantify “how close” a model is to exhibiting effective nonlinearity, since

a lack of effective nonlinearity Qijkajak = 0 must hold for all time, for any i, and for any

valid system trajectory. However, for an orthonormal set of temporal modes, and assuming

there exists at least one index i such that Qijj 6= 0, the average strength of model effective
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nonlinearity can be quantified through the metric

Se =
mini |Qijkajak|
maxi |Qijkajak|

=
mini |Qijj|
maxi |Qijj|

. (5.18)

The bar in ajak denotes a temporal average. In Section 5.6 it will be illustrated that, for

system identification, a lack of effective nonlinearity is not a terrible loss. The trapping

SINDy algorithm in Section 5.5 minimizes K̇ whether or not a negative definite AS can be

realized. However, without additional stability analysis, such models are no longer provably

stable for any initial condition. Although Eq. (5.17) is a linearly stable system, this is not

guaranteed for more general fluid models than the simple Burgers’ equation considered here.

5.5 SINDy with stability guarantees (trapping SINDy)

Model constraints in system identification, such as global conservation laws or other phys-

ical considerations, often result in improved models, but do not generally guarantee global

stability.

Enforcing stability in quadratic energy-preserving models is more complicated than Eq. (5.5).

To see this, note that there a few different circumstances under which one might want to

promote stability. If the true AS and the optimal m are known, one can simply constrain

the coefficients in Eq. (3.12) to produce this known negative definite AS. This would imply

that one already knows the optimally-shifted eigenvalues of the system and an m that pro-

duces these negative eigenvalues; if this is the case, so much information about the system

of ODEs is already known that machine learning methods are likely unnecessary.

But far more interesting are the cases in which 1) the underlying system is known to be

globally stable and effectively nonlinear, so one wants to find the “correct” m and corre-

sponding AS, or 2) it is not known if any m exists such that AS is negative definite. In

system identification, either of these cases can be addressed by searching for a model that

both optimally fits the data and is globally stable. In this context, a mixed approach is

adopted in the next section where the energy-preserving constraint is enforced and then the
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optimization is separately biased towards models with a trapping region. This technique is

a significant methodological extension because one can no longer rely on constraints of the

form in Eq. (5.5).

Recall from Thm. 1 that m is an arbitrary, constant vector, of the same state size as a,

that specifies the center of a possible trapping region. Stability promotion is then achieved

by jointly determining the sparse model coefficients ξ and state vector m such that AS from

Eq. (5.9) is negative definite.

To proceed with the trapping SINDy formulation, one must relate the model coefficients

in ξ to the matrix AS appearing in the trapping theorem. First, the projection operators

are defined: P L ∈ Rr×r×rM , PQ ∈ Rr×r×r×rM , and P ∈ Rr×r×rM . The operator P L projects

out the symmetric part of the linear coefficients through LS = P Lξ. The same is true for

the quadratic coefficients, Q= PQξ. The operator P = P L −mTPQ provides a concise

representation of AS through the following equation:

AS =LS −mTQ= Pξ = (P L −mTPQ)ξ. (5.19)

A tentative version of the trapping SINDy optimization problem is now defined, in analogy

to the constrained SINDy optimization in Eq. (5.6). It incorporates an additional loss term

to reduce the maximal (most positive) eigenvalue λ1 of the real, symmetric matrix AS:

argmin
ξ,m

[
1

2
‖Θξ − Ẋ‖2

2 + λ‖ξ‖1 + δ0(Csξ − d) +
λ1

ζ

]
. (5.20)

Note that a new hyperparameter ζ was introduced, which modulates the strength of the

λ1 loss term. Although λ1 is a convex function of the matrix elements [335], AS = (P L −

mTPQ)ξ is not affine in ξ′ = [ξ,m]. The result is that this new term is not convex, but

convex composite. It is possible to approximately solve this problem with a variable projection

technique, where one essentially treats ξ and m as independent, solves the convex problem

in ξ, and then substitutes ξ∗, the solution at each iteration, into the optimization for m. In
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practice this algorithm performs fairly well, although the convergence properties are unclear.

Eq. (5.20) is also amenable to other approaches, such as Gauss-Newton [68] or the prox-

linear algorithm [112], because λ1 is a convex function of the elements of AS and Pξ is

smooth in m and ξ. Although a modified algorithm is instituted below, these convex-

composite approaches are a promising future direction for effectively solving this nonconvex

optimization problem.

In order to produce an algorithm with better performance and better understood conver-

gence properties, a relax-and-split approach [457] is adopted, similar to the approach taken

in Champion et al. [82]. An auxiliary variable A is introduced that represents the projection

of AS = Pξ onto the space of negative definite matrices, and introduce two new terms in

the optimization:

argmin
ξ,m,A

[
1

2
‖Θξ − Ẋ‖2

2 + λ‖ξ‖1 + δ0(Csξ − d) +
1

2ζ
‖Pξ −A‖2

2 + δI(ΛA)

]
. (5.21)

The new least-squares term enforces a “soft” constraint (or bias) towards AS = Pξ being

negative definite by minimizing the difference between Pξ and its projection into the space

of negative definite matrices. The auxiliary variable A is updated to approximate AS =

Pξ, and then, through the δI term, enforced to be negative definite by requiring that the

diagonalized matrix ΛA = S−1AS lies in I = (−∞,−γA ], γA > 0. Directly enforcing Pξ to

be negative definite tends to badly distort the model fit to the data. Instead, the auxiliary

variable A in Eq. (5.21) allows the algorithm to accurately fit the data with ξ and then relax

the coefficients towards a negative definite AS to promote global stability.

This flexible formulation also allows A, the proxy for the projection of Pξ onto the

space of negative definite matrices, to vary, and therefore fit the particular eigenvalues of

the system in question. In other words, the proposed approach pushes AS into the space

of negative definite matrices in Rr×r with minimal assumptions about the eigenvalues, only

assuming that they are negative. Contrast this algorithm to a more restrictive approach

that prescribes an A, meaning a set of negative eigenvalues of Pξ is already known and
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Trapping SINDy hyperparameters
λ Specifies the strength of sparsity-promotion through the regularizer Rs(ξ).

λ= 0 already works well for low-dimensional systems because the ‖Pξ −A‖2
2

term promotes stability.
ζ Specifies how strongly to push the algorithm towards models with negative

definite AS. If ζ� 1, ξ∗ is unaffected by the minimization over m. If ζ� 1,
the problem is increasingly nonconvex.

γA Determines how far to push the eigenvalues of AS towards being negative
definite. Typically γA . 0.1 works for a variety of problems regardless of the
true eigenvalues of AS.

Table 5.1: Description of the trapping SINDy hyperparameters.

is compatible with the data. A description of each of the hyperparameters λ, ζ, and γA,

is provided in Table 5.1. Note that Eq. (5.21) is not convex in A, and this is the most

challenging aspect of this formalism.

Now that the problem has been defined in Eq. (5.21), it needs to be solved. If the convex

part of the optimization is denoted,

F (ξ,m,A) = ‖Θξ − Ẋ‖2
2/2 + λ‖ξ‖1 + δ0(Csξ − d) + ‖Pξ −A‖2

2/2ζ, (5.22)

and fix initial guesses for m and A, then one can define the solution vector ξ∗ through

ξ∗ = argmin
ξ

[
F (ξ,m,A)

]
. (5.23)

If λ= 0, ξ∗ is structurally identical to the ξ∗ in Champion et al. [82]:

H = (ΘTΘ +
1

ζ
P TP )−1, (5.24)

ξ∗ =H
[
I −CT

s (CsHC
T
s )−1CsH

] [
ΘTẊ +

1

ζ
P TA

]
+HCT

s (CsHC
T
s )−1d. (5.25)

H is positive definite, I is the identity matrix, and Csξ
∗ = d can be verified using Eq. (5.25).

The minimization over ξ with λ 6= 0 is still convex but not analytically tractable as in
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Eq. (5.25). Since it is convex, it can be solved with standard convex optimization libraries

such as CVXPY [109]. It can also be shown to reduce to a constrained quadratic program

over the unit box with a positive semidefinite cost matrix. A barrier to this route is that

typical numerical solvers either assume that the quadratic cost matrix is sparse or positive

definite. Neither assumption is true here.

Now that the minimization over ξ has been solved, prox-gradient descent can be used

on (m,A); each algorithm iteration, one alternates between solving for ξ∗ and solving for

(m∗,A∗). Again, one can think about this problem as a variable projection [9, 454], which is

a value function optimization over the remaining variables (m,A). To make this viewpoint

more precise, define

F̃ (m,A) = F (ξ∗,m,A), (5.26)

The problem to solve is now written more simply as

argmin
m,A

[
F̃ (m,A) + δI(ΛA)

]
.

Prox-gradient descent is applied to this nonconvex problem, so that

m∗ =m− αm∇mF̃ (m,A), (5.27)

A∗ = projI

[
A− αA∇AF̃ (m,A)

]
, (5.28)

where αm and αA are step sizes. All that remains is to compute the gradients of the value

function F̃ ,

∇AF̃ (m,A) =
1

ζ
(A− Pξ∗), (5.29)

∇mF̃ (m,A) =
1

ζ
PQξ∗(A− Pξ∗). (5.30)
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These are Lipschitz continuous functions with Lipschitz constants LA, Lm satisfying

αA ≤
1

LA
≤ ζ, (5.31)

αm ≤
1

Lm
≤ ζ

‖(PQξ∗)ijk(PQξ∗)ljk‖F

, (5.32)

in order for guaranteed convergence of fixed step-size, prox-gradient descent [14]. While the

denominator in Eq. (5.32) varies with the update in ξ, in practice, one can reduce αm until

convergence is found. The full trapping SINDy optimization is illustrated in Algorithm 1.

Algorithm 1 Trapping SINDy

Input: Numerical data Ẋ and optional initial guesses for m and A.

Output: Optimal model coefficients ξ∗ and shift vector m∗.

1: procedure SINDy(Ẋ, λ, ζ, γA)

2: Construct Θ(X), P , Cs, and d.

3: while |ξk − ξk+1|> εξtol and |mk −mk+1|> εmtol

4: ξk+1⇐= argminξk
[
F (ξk,mk,Ak)

]
,

5: Sk+1(ΛA)k+1(Sk+1)−1⇐=Ak − αA∇AF̃ (m,A)|mk,Ak ,

6: Ak+1⇐= Sk+1projI
[
(ΛA)k+1

]
(Sk+1)−1,

7: mk+1⇐=mk − αm∇mF̃ (m,A)|mk,Ak ,

8: end procedure

In words, 2: initialize variables, 3: start iteration loop, 4: convex minimization for ξk+1, 5:

prox-gradient step for Ak+1, 6: project Ak+1 into I, rotate into Pξk+1 basis, and 7: prox-

gradient step for mk+1. Note that inequalities (5.31)–(5.32) should be satisfied, and there

tends to be a sweet spot for ζ. It is often useful to start with ζ� 1 and then reduce ζ until

the model coefficients are significantly affected.

εξtol and εmtol are convergence tolerances. The Sk+1 are the eigenvectors of Pξk+1 and

are used to transform Ak+1 into the same basis as Pξk+1. An example of the algorithm



127

iteration:

· · · · · ·
0 151 152 153 154 155 156 157 158 500

Figure 5.5: Illustration of trapping SINDy progress on noisy Lorenz data. The minimization
results in the transition from a poor initial guess to identification of the correct attractor
dynamics.

iterating on noisy data from the chaotic Lorenz system is shown in Fig. 5.5, demonstrating

how the algorithm can transition from a poor initial guess that decays to a fixed point

to a stable model converging to the correct attractor. An optional FISTA method [28,

316] is also implemented for reducing the convergence time in the (m,A) optimization.

Algorithm 1 is computationally intensive compared to the traditional SINDy method, but

it can be parallelized for speed in future work, following other SINDy variants [201]. Initial

guesses are allowed for m and A in order to facilitate continuation of previous optimization

runs. Along with these methods, the the λ1 variant of the trapping algorithm in Eq. (5.20)

is also implemented in the open-source PySINDy code [104, 210] described in Chapter 6.

A key insight to the trapping algorithm is that the energy-preserving constraint Csξ = d

is non-negotiable. Although in practice small errors in Csξ = d do not significantly affect

the optimization problem, the ‖Pξ −A‖2
2 term in the optimization loses its physical inter-

pretation if the coefficients are not exactly energy-preserving. Thus, the goal is to satisfy

Csξ = d exactly, and then to push a potential model towards a more refined model that

exhibits a trapping region, potentially at the expense of the fit to the data (this can also

mitigate overfitting).

With regards to choosing hyperparameters, there is some work to do for each new prob-

lem. Fortunately, the results in Sec. 5.6 are fairly insensitive to the exact hyperparameter

values. Rather, a common occurrence in sparse regression techniques is rediscovered – the

existence of cutoffs in the hyperparameter space where the model quality sharply drops.

These sharp boundaries are actually grounded in reality; if sparsity-promotion is increased
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in the regression, it will eventually start to truncate out the smallest physical scales in the

system, and at “large enough” values, it truncates the primary dynamics of interest. An

example of this behavior was already illustrated in Sec. 5.2 and Fig. 5.3 when the threshold

value is larger than the HIT-SI injector frequency. Another example of this behavior is shown

in Sec. 6.2.1

More specifically for Algorithm 1, if the system has some small scales, poor choices of λ

(sparsity-promotion) or γA (smallest eigenvalue of AS) can truncate these scales during the

regression. A reasonable strategy, assuming no prior system knowledge, is to start with λ= 0,

γA ∼ 0, ζ� 1, and then scan the values. For ζ (the strength of the long-term boundedness

term), there tends to be a “sweet spot” regime. If ζ−1‖Pξ −A‖2
2�‖Θξ − Ẋ‖2

2, then

ξ∗ is essentially unaffected by the minimizations over m and A. In practice, this means

that poor initial guesses for ξ∗ do not improve as the full optimization problem is solved.

In the opposite extreme, ζ−1‖Pξ −A‖2
2�‖Θξ − Ẋ‖2

2, the optimization in Eq. (5.21) is

increasingly nonconvex and potentially pulls ξ∗ far away from the data. Finding the ζ

regime where updating m perturbs ξ∗, instead of leaving ξ∗ unaffected or mangled, requires

scanning ζ. Because each problem requires some data-craftsmanship, there are plans to

parallelize the algorithm to efficiently scan large ranges in the hyperparameters. Finally,

prior system knowledge can also constrain the hyperparameter space.

5.6 Trapping SINDy results

The utility of the trapping SINDy algorithm to identify stable, sparse, nonlinear models for a

number of canonical fluid and plasma systems is now investigated. These examples illustrate

that it is possible to both effectively discover stable models that exhibit trapping regions and

improve the discovery of systems that do not satisfy Thm. 1 or the requirement of effective

nonlinearity. For each system, SINDy is trained on a single trajectory with a random initial

condition and evaluate the model on a different trajectory of the same temporal duration

with a new random initial condition. It is difficult to quantity model performance for chaotic

systems, such as the Lorenz system, where lobe-switching is extremely sensitive to initial
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conditions and the coefficients of the identified model, and for systems with transients, for

which the precise timing of instability must be matched to achieve the correct phase. Two

reasonable definitions for the model quality are the relative Frobenius error in the model

coefficients (for models with closed forms) and the time-averaged error in Ẋ,

Em =
‖ΞTrue −ΞSINDy‖F

‖ΞTrue‖F

, (5.33)

Ef =
‖ẊTrue − ẊSINDy‖2

‖ẊTrue‖2
. (5.34)

It should be understood that the time-average in Ef is computed after dividing the numerator

and denominator. When appropriate, the far more demanding relative prediction error is

reported,

Epred =
‖XTrue −XSINDy‖F

‖XTrue‖F
. (5.35)

Table 5.2 summarizes the sampling, hyperparameters, and identified trapping regions

for each example discussed in Sec. 5.6. Table 5.2 is intended to be instructive rather than

exhaustive. For clarity, the training and testing trajectories used to generate this table

do not have added noise, although Fourier modes from the Burgers’ Equation and POD

modes from the Von Kàrmàn street are obtained from direct numerical simulation (DNS),

and subsequently contain minor numerical noise; the performance on noisy data will also be

somewhat investigated in an example below. In the example below and additional examples

in Chapter 6, noise is added to the training data to complicate some machine learning task.

In all cases in this work, noise amplitudes are presented as percentages of the training data

root-mean-square error (RMSE). In other words, zero-mean Gaussian noise is added to every

training data point, with variance equal to a fraction of the training data RMSE. So added

noise of N (0, 0.2× RMSEtrain) is reported as 20% noise. When using experimental data,

there are different sources of noise which may not be Gaussian.

To compare trapping region sizes Rm across different examples, Reff =Rm/
√∑r

i=1 y
2
i
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System r ∆t M λ ζ γA m∗ Rm Reff λ1 Em Ef

Mean field 3 0.01 50K 0 1010 1 [0,0,1.3] 1.3 218 -1 10−5 10−12

Atm. osc. 3 0.005 50K 0 108 0.1 [0,−0.9,0.4] 300 597 −0.01 10−4 10−7

Lorenz 3 0.005 50K 0 0.1 1 [−1.2,0.1,38] 106 4.4 −1 10−3 10−5

Triad MHD 6 0.001 50K 0 103 0.1 [0,...,0] – – 0 10−6 10−10

Burgers’ Eq. 10 0.1 30K 0 500 0.1 [−0.2,0,...] – – 0.1 – 10−3

Cyl. wake 5 0.1 30K 0.1 1 0.1 [−1.2,...,1.1] 29 17 −0.1 – 10−3

Table 5.2: Description of the sampling, trapping SINDy hyperparameters, and identified
trapping region for the dynamic systems examined in Section 5.6. Trajectory data does not
include any added noise so λ= 0 works for most of the systems. The SINDy models are
identified from a single trajectory. These parameters produce reasonable results for these
systems, but a hyperparameter scan can lead to further improvements. The errors in the
last two columns are approximate up to O(1) factors.

is reported, which is normalized to the approximate radius of the training data. The de-

nominator denotes the root-mean-square of the temporal average of each component of the

trajectory.

Mean field model

Often the trajectories of a nonlinear dynamical system, which has a linear part exhibiting

some stable directions, will approach a slow manifold of reduced dimension with respect to

the full state space. As an example of this behavior, consider the following linear-quadratic

system originally proposed by Noack et al. [320] as a simplified model of the von Kàrmàn

vortex shedding problem explored further in Sec. 5.6:

d

dt


x

y

z

=


µ −1 0

1 µ 0

0 0 −1



x

y

z

+


−xz

−yz

x2 + y2

 . (5.36)

Systems of this form commonly arise in PDEs with a pair of unstable eigenmodes represented

by x and y. The third variable z models the effects of mean-field deformations due to
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nonlinear self-interactions of the instability modes. The system undergoes a supercritical

Hopf bifurcation at µ= 0; for µ� 1 trajectories quickly approach the parabolic manifold

defined by z = x2 + y2. All solutions asymptotically approach a stable limit cycle on which

z = x2 + y2 = µ. It is enough to notice that m= [0, 0, µ+ ε], ε > 0 produces

AS =LS −mTQ=


−ε 0 0

0 −ε 0

0 0 −1

 , (5.37)

so this system exhibits a trapping region. A stable and accurate model is illustrated and

identified by the trapping SINDy algorithm in Fig. 5.6a.

This system is of particular interest because it is a prototypical example of how quadratic

interactions in a multi-scale system can give rise to effective higher-order nonlinearities. If

the dynamics are restricted to the slow manifold, the system reduces to the cubic Hopf

normal form [320, 176]

d

dt

x
y

=

µ− (x2 + y2) −1

1 µ− (x2 + y2)


x
y

 . (5.38)

Systems of this type arise in weakly nonlinear pattern-forming systems and are often called

Stuart-Landau equations. In this case, the nonlinear interactions are no longer energy-

preserving, since the manifold restriction removes the fast, dissipative degree of freedom.

One might intuitively expect that this type of manifold reduction would inherit the trapping

properties of the underlying system, but it is unclear if a general theory of such situations

has been worked out, even for the quadratic energy-preserving case.
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(a) Trapping SINDy model (black) of a mean
field system trajectory (red) with µ= 0.01 and
initial condition [µ, µ, 0]. The trajectory is
shown within the estimated trapping region and
ellipsoid where K̇ ≥ 0. The prediction error is
Epred ≈ 0.6%.

(b) Same illustration for the atmospheric oscil-
lator with random initial condition chosen from
the unit ball. There is large scale separation in
this system, so that |λ1| � |λ2|, |λ3|. This leads
to an overestimate of the trapping region size.
The prediction error is Epred ≈ 6%.

Figure 5.6: Identified models and trapping regions for the mean field and atmospheric oscil-
lator systems.

Atmospheric oscillator model

A more complicated Lorenz-like system of coupled oscillators, motivated from atmospheric

dynamics, is now examined:

d

dt


x

y

z

=


µ1 0 0

0 µ2 ω

0 −ω µ2



x

y

z

+


σxy

κyz + βz2 − σx2

−κy2 − βyz

 . (5.39)

For comparison, the parameters in Tuwankotta et al. [430], µ1 = 0.05, µ2 =−0.01, ω = 3,

σ = 1.1, κ=−2, and β =−6, are adopted, for which a limit cycle is known to exist. The

trapping SINDy algorithm finds m such that AS is negative definite for a wide range of

parameter and hyperparameter choices, and accurate model results are illustrated in Fig. 5.6b

alongside the mean-field model results.

So far, the trapping algorithm has successfully produced accurate and provably stable
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models on simple systems that exhibit well-behaved attractors. In the next sections, noisier

and higher-dimensional systems are investigated, which typically provide significant chal-

lenges for model discovery algorithms.

Noisy Lorenz attractor

The Lorenz 1963 system [261] is among the simplest systems exhibiting chaotic dynamics,

developed to model thermal convection in the atmosphere based on computer simulations

by Ellen Fetter and Margaret Hamilton:

d

dt


x

y

z

=


−σ σ 0

ρ −1 0

0 0 −β



x

y

z

+


0

−xz

xy

 . (5.40)

For this system, it is possible to write AS explicitly as

AS =


−σ 1

2
(ρ+ σ −m3) 1

2
m2

1
2
(ρ+ σ −m3) −1 0

1
2
m2 0 −β

 . (5.41)

For Lorenz’s choice of parameters, σ = 10, ρ= 28, β = 8/3, this system is known to exhibit a

stable attractor. For m= [0, m2, ρ+ σ] (m1 does not contribute to AS so it is set to zero),

AS =


−σ 0 1

2
m2

0 −1 0

1
2
m2 0 −β

 , (5.42)

λ1 =−1, λ± =−1

2

[
β + σ ∓

√
m2

2 + (β − σ)2

]
,
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Figure 5.7: Comparison between the constrained SINDy (magenta) and trapping SINDy
(black) results for the Lorenz system using three different values of the sparsity-promotion
strength λ. Unconstrained SINDy results are not pictured because most of the models
diverge. Each model is trained on a single Lorenz attractor with noise sampled from N (0, 4)
(∼ 20− 30% noise) and an initial condition of [1,−1, 20] (blue). The illustrations depict the
model performance on data evolved from four random initial conditions between [−10, 10]
(this testing data is not shown but the attracting set is unchanged). Trapping SINDy
produces stable models that follow the underlying attractor for all values of λ.

so that if λ± < 0, then −2
√
σβ <m2 < 2

√
σβ. The algorithm successfully identifies the

optimal m, and identifies the inequality bounds on m2 for stability. As this analysis is

invariant to m1, in principle the trapping region is given by a cylinder, extruded in the m1

direction, rather than a sphere.

Further improvements in model quality can be obtained. Unconstrained, constrained,

and trapping SINDy models are trained four times; the data for each is a single Lorenz

attractor with four different noise instantiations. Then the performance of the resulting

models is tested with a random initial condition in [−10, 10]× [−10, 10]× [−10, 10]. For di-

rect comparison, the L1 regularizer is used for each method. Fig. 5.7 illustrates the increased

performance with the trapping SINDy algorithm over the constrained SINDy algorithm on

noisy Lorenz data for varying threshold levels λ= {0, 0.01, 0.1}. The unconstrained method

is not pictured because most of the identified models diverge at these high noise levels. At



135

all values of λ and most initial conditions, the unconstrained method overfits to the data and

produces unstable and diverging models. The traditional constrained SINDy variant mostly

manages to produce stable models but produces increasingly poor data fits as λ increases.

In contrast, the trapping version continues to produce stable models that lie on the correct

attractor. In this way, the additional optimization loss terms that promote stable models

provide both a trapping region of known size and additional robustness to noise, even when

the models appear otherwise stable, as with many of the constrained SINDy models that

incorrectly decay to a fixed point.

Triadic MHD model

Magnetohydrodynamic systems exhibit quadratic nonlinearities that are often energy-preserving

with typical boundary conditions. Consider a simple model of the nonlinearity in two-

dimensional incompressible MHD, which can be obtained from Fourier-Galerkin projection

of the governing equations onto a single triad of wave vectors. For the Fourier wave vectors

k1 = (1, 1), k2 = (2,−1), and k3 = (3, 0) and no background magnetic field, the Carbone and

Veltri [75] system is



u̇1

u̇2

u̇3

Ḃ1

Ḃ2

Ḃ3


=



−2ν 0 0 0 0 0

0 −5ν 0 0 0 0

0 0 −9ν 0 0 0

0 0 0 −2η 0 0

0 0 0 0 −5η 0

0 0 0 0 0 −9η





u1

u2

u3

B1

B2

B3


+



4(u2u3 −B2B3)

−7(u1u3 −B1B3)

3(u1u2 −B1B2)

2(B3u2 − u3B2)

5(u3B1 −B3u1)

9(u1B2 −B1u2)


, (5.43)

where as usual ν is the viscosity and η is the resistivity. Without external forcing, this

system is stable, dissipating to zero, so the inviscid limit ν = η = 0 is considered. The

system is now Hamiltonian and the algorithm correctly converges to m= 0, AS = 0. The

results in Fig. 5.8 provide a useful illustration that trapping SINDy converges to stable
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Figure 5.8: The triad model for 2D inviscid MHD training data (blue, upper triangle) and a
trapping SINDy model (black) capturing Hamiltonian dynamics on testing data (red, lower
triangle).

energy-preserving models even when the trapping theorem is not satisfied. These results

also provide a reminder that there are a large number of dynamical systems beyond fluids,

such as MHD, which may benefit from these types of techniques. The reason the algorithm

converges to the correct behavior is because it is still minimizing K̇; in this case trapping

SINDy converges to K̇ ≈ 0 and can make no further improvement.

Forced Burgers’ equation

The viscous Burgers’ equation has long served as a simplified one-dimensional analogue to

the Navier-Stokes equations [67, 180]. The forced, viscous Burgers’ equation on a periodic
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domain x ∈ [0, 2π) is:

d

dt
q =−(Uq + q)∂xq + ν∂2

xxq + gq(x, t), (5.44)

where the constant Uq models mean-flow advection. Now, this system is projected onto

a Fourier basis and constant forcing is assumed to act on the largest scale, i.e., gq(x, t) =

σ
(
a1(t)eix + a−1(t)e−ix

)
, as in Noack et al. [322]. After Fourier projection, the evolution of

the coefficients ak(t) is given by the Galerkin dynamics

ȧk =
(
δ|k|1σ − νk2 − ikUq

)
ak −

r∑
`=−r

i`a`ak−`. (5.45)

In the subcritical case σ < ν, the origin of this system is stable to all perturbations and

all solutions decay for long times. However, in the supercritical case σ > ν, the excess energy

input from the forcing cascades to the smaller dissipative scales. The “absolute equilibrium”

limit σ = ν = 0 has a Hamiltonian structure; for long times the coefficients approach thermo-

dynamic equilibrium and equipartition of energy [270]. This structure does not correspond

to any physical behavior of the Navier-Stokes equations, although it does approximate some

properties of the inviscid Euler equations [230]. Due to its rich dynamics, this modified

Burgers’ equation has also been investigated in the context of closure schemes for Galerkin

models [322]. The PDE in Eq. (5.44) is simulated with a high-resolution Godunov-type fi-

nite volume method using a van Leer flux limiter, implemented in the open-source Clawpack

solver [93].

The model performance is illustrated in Fig. 5.9a for the subcritical case with σ = 0.01 and

ν = 0.025, the supercritical case with σ = 0.1 and ν = 0.025, and the absolute equilibrium. In

all cases Uq = 1. For the subcritical condition, all the eigenvalues of LS are negative, and thus

the algorithm finds stable models. For the supercritical condition σ > ν, there is some sub-

tlety. The algorithm does not converge to a negative definite AS, although it finds a solution

with K̇ ≤ 0. As mentioned in Section 5.4.2, this system does not exhibit effective nonlinear-
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absolute equilibrium supercritical, σ > ν subcritical, σ < ν

(a) Trapping SINDy model (black) for the modified Burgers’ equation in the three dynamic regimes.
For improved illustration, the ground truth data (blue) is generated from the 10D Noack et al. [322]
model rather than DNS.
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(b) Temporal evolutions of each (ai, aj) pair for i, j = 1, ..., 10 obtained from DNS training data
(blue, upper triangle), DNS testing data (red, lower triangle), and trapping SINDy prediction
on both DNS datasets (black). The trapping algorithm struggles a bit with the transients, but
obtains the correct attractor behavior.

Figure 5.9: Summary of trapping SINDy performance for the forced Burgers’ equation.
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ity. This lack of effective nonlinearity was also true for the MHD example in Section 5.6,

since the initial condition with no magnetic field perturbation, B1(0) =B2(0) =B3(0) = 0,

remains on the purely hydrodynamic manifold. In the inviscid limit, one does not need to

consider this subspace because the system already does not satisfy the trapping theorem by

virtue of being Hamiltonian. Lastly, in the absolute equilibrium regime the trapping SINDy

algorithm correctly identifies vanishing eigenvalues of AS. In practice, excellent models are

found for all of the aforementioned systems and for all practical purposes these models are

typically stable, regardless of effective nonlinearity or Hamiltonian dynamics, because the

SINDy trapping algorithm is minimizing K̇. However, without effective nonlinearity, there

is no guarantee to produce a stable model for every possible initial condition.

An illustration is provided in Fig. 5.9b for the r = 10 model built from the DNS data in

the supercritical regime with σ = 0.1, ν = 0.025. It struggles a bit with the transient but

otherwise the performance is accurate. Part of the reason for the poor fit to the transient

is that λ= 0 is used here. The biasing towards stability appears to mitigate some of the

need for sparsity-promotion; in other words, sparsity-promotion is not necessarily needed

to produce a stable model, but may be needed for a more accurate or interpretable model,

since the number of coefficients in Qijk is O(r3) despite the constraints. Using finite λ may

improve the model further, especially the transients. Next, the results section is concluded

by addressing the challenging von Kàrmàn vortex shedding behind a circular cylinder.

Von Kàrmàn vortex street

The fluid wake behind a bluff body, characterized by a periodic vortex shedding phenomenon

known as a von Kàrmàn street, is investigated. The two-dimensional incompressible flow past

a cylinder is a stereotypical example of such behavior, and has been a benchmark problem

for Galerkin models for decades [320]. The transition from a steady laminar solution to

vortex shedding is given by a Hopf bifurcation, as a pair of eigenvalues of the linearized

Navier-Stokes operator cross the real axis.

The transient energy growth and saturation amplitude of this instability mode is of
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particular interest and has historically posed a significant modeling challenge. Early Galerkin

models of vortex shedding, based on a POD expansion about the mean flow, captured the

oscillatory behavior but were structurally unstable [106]. This was later resolved by Noack

et al. [320], who recognized that the transient behavior could be explained by Stuart-Landau

nonlinear stability theory, in which the unsteady symmetric flow is deformed to the neutrally

stable mean flow via a nonlinear self-interaction of the instability mode. In that work, an

8-mode POD basis was augmented with a ninth “shift mode” parameterizing this mean flow

deformation. This approach was later formalized with a perturbation analysis of the flow at

the threshold of bifurcation [402].

This modification encodes the intuition that the dynamics take place on the parabolic

manifold associated with the Hopf bifurcation; without it, the energy quadratic models tends

to overshoot and oscillate before approaching the post-transient limit cycle. Nevertheless, the

9-mode quadratic Galerkin model does resolve the transient dynamics, nonlinear stability

mechanism, and post-transient oscillation, accurately reproducing all of the key physical

features of the vortex street. Moreover, in Schlegel and Noack [390] stability of the quadratic

model was proven with m9 =mshift = ε, ε > 1, and mi = 0 for i= {1, ..., 8}. Recall from

the discussion in Section 5.4.2 that POD-Galerkin models will generally weakly satisfy the

effective nonlinearity criteria and it is unclear if the shift-mode complicates this picture.

Although the POD-Galerkin model is an accurate description of the flow past a cylinder, it

is an intrusive model, in the sense that evaluating the projected dynamics requires evaluating

individual terms in the governing equations, such as spatial gradients of the flow fields. POD-

Galerkin models therefore tend to be highly sensitive to factors including mesh resolution,

convergence of the POD modes, and treatment of the pressure and viscous terms. Recent

work by Loiseau et al. [257, 259, 258] has bypassed the Galerkin projection step by using

the SINDy algorithm to directly identify the reduced-order dynamics. This approach has

been shown to yield compact, accurate models for low-dimensional systems (r = 2 or 3),

but preserving accuracy and stability for higher-dimensional systems remains challenging.

Higher-dimensional regression problems often become ill conditioned; for example, in the
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cylinder wake example, the higher modes 3-8 are essentially harmonics of the driving modes

1-2, and so it is difficult to distinguish between the various polynomials of these modes during

regression. Because these higher harmonics are driven by modes 1-2, the 3D constrained

quadratic SINDy model with modes 1-2 plus the shift mode from Loiseau et al. [257] already

performs well enough to capture the energy evolution with minor overshoot and correct long-

time behavior. Details of the DNS and the POD-Galerkin technique used to reproduce the

9D shift-mode model can be found in the original work [209].

With the trapping SINDy algorithm, new 5-dimensional and 9-dimensional models for

the cylinder wake are obtained and compared against the same-size analytic POD-Galerkin

models. The 5D trapping SINDy model is provably stable and the identified trapping region

is illustrated in Fig. 5.10a. Additionally, the 5D SINDy and 9D POD-Galerkin models

are compared in Fig. 5.10c. The 5D trapping SINDy model outperforms the 9D POD-

Galerkin model by significantly improving the transient and improving the identification of

the long-term attractor. For the 9D trapping SINDy model, the largest eigenvalue of AS

was reduced to O(10−2 − 10−4) but the algorithm was unable to produce accurate trapping

SINDy models with fully negative definite AS. In practice, these models are functionally

stable; a large set of random initial conditions were tested and no unbounded trajectories

were discovered. Further searching in the hyperparameter space, or more algorithm iterations

for better convergence, could potentially produce fully stable models.

Despite this setback, the 9D trapping SINDy model performs quite well. The Galerkin

model and the trapping SINDy model exhibit comparable performance and the SINDy model

improves the transient prediction. The energies in Fig. 5.10b illustrate convergence to the

true fluid flow energy for all the SINDy and POD-Galerkin models, with only the 9D trap-

ping SINDy model capturing the precise timing of the transient. The flow reconstructions in

Fig. 5.10d are quite accurate for both models. This is surprisingly strong performance with

SINDy; recall that: 1) the Galerkin model is far more invasive a procedure than SINDy, re-

quiring computation of spatial derivatives and inner products from the DNS, 2) the Galerkin

model can still be quite sensitive to the DNS data, boundary conditions, and mesh size, and
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(a) Trapping SINDy 5D model (black) of a
Von Kàrmàn trajectory (red). The trajectory
is shown within the estimated trapping region
and ellipsoid where K̇ ≥ 0.

0 50 100 150 200 250 300
0

10

20
DNS
POD-5
POD-9
SINDy-5
SINDy-9

K

t

(b) Comparison of the energies for DNS and
the 5 and 9 mode POD-Galerkin and trap-
ping SINDy models.
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(c) 5-mode trapping SINDy (black) and
9-mode POD-Galerkin (blue) models with
a random initial condition, and the Von
Kàrmàn trajectory used for training (red).
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(d) Predictions of the vorticity field for the von Kàrmàn street at four snapshots in time, with
a movie available [1]. The trapping SINDy model outperforms the 9D POD-Galerkin model,
although an initial phase error in the trapping SINDy prediction (visible in the first snapshot)
persists throughout the prediction.

Figure 5.10: Summary of the differences between DNS, POD-Galerkin models, and trapping
SINDy models.
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3) the 9D trapping SINDy model is far sparser and has far fewer “active” terms than the 9D

POD-Galerkin model.

The difficulty in producing provably stable, 9D trapping SINDy models here appears to

reveal an interesting optimization tradeoff. While sparsity-promotion tends to promote more

accurate models and reduce the complexity of the nonconvex optimization problem (since

there are fewer active terms to manage), it also deemphasizes the proposed metric for the

strength of effective nonlinearity, Se from Eq. (5.18), by reducing the values of unimpor-

tant model terms. For instance, the SINDy model here exhibits weak effective nonlinearity,

Se ≈ 10−5, compared with Se ≈ 10−2 for the POD-Galerkin model. This small value of Se

may indicate increased difficulty in obtaining a fully negative definite AS. SINDy models

with weaker sparsity-promotion exhibit larger Se, but then it becomes exceedingly difficult

to obtain accurate models in the nonconvex optimization problem. Without any sparsity-

promotion this is an ill-conditioned, nonconvex optimization in a 330-dimensional space. In

this way, there appears to be some tradeoff between sparsity-promotion and the strength

of effective nonlinearity. Given these points, the sparse 5-mode and 9-mode SINDy models

are promising first steps towards incorporating stability constraints into higher-dimensional

data-driven models.

Before concluding, note that the eight-mode (no shift mode) POD-Galerkin model from

Noack et al. [320], and all eight-mode models found by trapping SINDy, do not exhibit global

stability. The problem fundamentally stems from the marginal stability of the mean flow

and the very weak effective nonlinearity, both of which are somewhat addressed by the shift

mode in the 9-mode model. This should be taken as a cautionary warning; success of these

algorithms still relies on useful representations that capture the stability information of the

underlying dynamics. This may require high-resolution data or alternative dynamic bases.

5.7 Trapping SINDy concluding remarks

This work developed physics-constrained system identification by biasing models towards

fulfilling global stability criteria, and subsequently produces long-term bounded models with
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no extra assumptions about the stability properties of equilibrium points and equilibrium

trajectories. In order to produce globally stable models, a new trapping SINDy algorithm

was implemented, based on the Schlegel-Noack trapping theorem [390]. Biasing models to-

wards stability, and post-fit, proving that identified models are globally stable, will likely

become increasingly important for both projection-based and data-driven models of fluids

and plasmas. This approach, which relies on using the energy as a Lyapunov function for

an entire class of models with fixed nonlinear structure, is challenging for application to

higher-order nonlinearities where generic Lyapunov functions are often unknown. Fortu-

nately, data-driven methods are now increasingly used to discover Lyapunov functions and

barrier functions for nonlinear control [317, 216, 368, 228, 197, 416, 46, 84, 279]. These

methods build a heuristic Lyapunov function for a given dataset, rendering the search for a

Lyapunov function tractable but possibly at the cost of model generality.

The effectiveness of this optimization to identify stable models was demonstrated and

additionally managed to improve the discovery of models that do not conform to the assump-

tions of the trapping theorem. The trapping SINDy algorithm resulted in more accurate and

stable models for a range of systems, including simple benchmark problems, noisy data from

chaotic systems, and DNS from full spatiotemporal PDEs. In these examples, it was found

that this modified SINDy algorithm could effectively discover stable, accurate, and sparse

models from significantly corrupted data. Even when an explicit stable trapping region was

not found, improved stability was observed. Finally, relatively high-dimensional reduced-

order models were explored, with O(10) degrees of freedom, which are typically challenging

for unconstrained data-driven algorithms.

There is considerable future work for biasing machine learning methods to discover mod-

els that satisfy existence-style proofs of stability, especially those that require nonconvex

optimization; the lack of convexity in the trapping SINDy algorithm seems to lead to dep-

recating algorithm speed and tractability as the size of the problem increases. There are

many fluid flows which have known stable and unstable projection-based and data-driven

reduced-order models, and which would benefit from a larger class of models with trapping
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region guarantees. Future work should apply this methodology to heavily-researched sys-

tems such as the fluidic pinball [108, 358] and the lid-cavity flow [421, 262]. Other promising

future work includes adapting this structure to many-body coupled Stuart-Landau equations

for which stability theorems already exist [342]. However, the nonconvexity of this formu-

lation may require adaptation to a deep learning approach for high-dimensional many-body

problems that occur in fluids and modern neuronal models.

For all of the examples in this work, the trapping SINDy algorithm was trained on a

single trajectory, although most data-driven methods can improve performance by processing

data from multiple trajectories. Very large data can be effectively addressed with modern

approaches, such as manifold Galerkin projection [258] and autoencoder [23, 296, 266, 81, 243]

methods. These approaches may also address the significant Kolmogorov width limitations of

linear transformations [350], and help ease the nonconvexity of the new optimization problem.

There are also modern reduced-order modeling techniques, such as “lift & learn” [354], which

produce quadratic ROMs regardless of the nonlinear structure of the underlying governing

equations [147]. Similarly Koopman analysis aims to produce a map from the original state-

space, where the dynamics are nonlinear, to a new coordinate system, typically infinite

dimensional, where the dynamics become linear [229, 295, 222, 266, 249, 452, 417, 333].

However, adapting this methodology to alternative bases requires additional work to

understand how the trapping theorem, or similar theorems, change under these (often non-

linear) coordinate transformations. For instance, Pan et al. [339] builds stable Koopman

models by requiring that the real parts of the eigenvalues of the linear Koopman operator

are non-positive, although the relationship between this linear stability and the trapping

theorem is unclear. In related work, neural-network-based encoders are often used to reverse

this mapping; encoders can input quadratically nonlinear fluid flow data and apply nonlinear

transformations to find useful reduced-order models beyond what is capable with traditional

projection-based methods [143]. A natural question that arises is: assuming the original

energy-preserving, quadratically nonlinear fluid flow exhibits a trapping region, under what

conditions does global stability hold in a new coordinate system given by g(y), for some
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map g : Rr→ Rs? The transformation could be an encoder, the reverse lifting map [354],

or some other coordinate transform. Understanding how the stability properties manifest in

the transformed system is a promising future direction for extending this stability theorem

for ROMs with alternative dynamic bases.
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Chapter 6

ROBUST SPARSE SYSTEM IDENTIFICATION WITH
PYSINDY

Building physics priors into data-driven models with constraints has been illustrated

in Sec. 5.1, and building stability priors into data-driven ROMs via new loss terms has

been illustrated in Sec. 5.3. There are also many other ways to improve the robustness

and quality of system-identified models: ensembling (sub-sampling) techniques [267, 366],

Bayesian methods [456, 340, 319, 315, 173, 264, 299] and identification of weak form mod-

els [155, 156, 365, 366, 292, 291, 290]. Further, recent variants of the SINDy method are

available that address systems with control inputs and model predictive control [204, 122],

implicit ODEs [273, 201], and PDEs [376, 384]. This chapter details the incorporation of

many of these advanced features into an easy-to-use and open-source code, and illustrates

the use of these new features for advanced system identification across a number of scien-

tific fields. A brief summary of the work presented in this chapter is also available as a

pre-print [210].

6.1 Overview of the PySINDy Python code

A number of students and researchers at the University of Washington and elsewhere have

collaboratively created the PySINDy code [104] as an open-source tool for applying the SINDy

method. The original PySINDy package1 was developed to identify a particular class of sys-

tems described by Eq. (5.1). In order to incorporate new developments with this technique,

and accommodate the wide variety of possible dynamical systems, PySINDy has now been

extended to a more general setting and added significant new functionality [210]. The code

1https://github.com/dynamicslab/pysindy

https://github.com/dynamicslab/pysindy
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is thoroughly documented, contains extensive examples, and integrates a wide range of func-

tionality, some of which may be found in a number of other local SINDy implementations2.

In contrast to some of these existing implementations, PySINDy is completely open-source,

adheres to software best-practices (for instance, providing unit tests and adhering to PEP8

stylistic standards), and minimally dependent on non-standard Python packages.

6.1.1 PySINDy features

The core object in the PySINDy package is the SINDy model class, which is implemented as a

scikit-learn estimator. This design choice was made to ensure that the package is simple

to use for a wide user base, as many potential users will be familiar with scikit-learn. It

also expresses the SINDy model object at the appropriate level of abstraction so that users can

embed it into more sophisticated pipelines in scikit-learn, such as for parameter tuning

and model selection. The PySINDy implementation involves three major steps, resulting in

three modeling decisions:

1. The numerical differentiation scheme used to approximate Ẋ, Ẍ, ... from X. For

usage with PDEs, this also governs the approximation of spatial derivatives.

2. The candidate functions constituting the feature library Θ;

3. The sparse regression algorithm that is applied to solve (5.3) to find ξ.

2https://github.com/snagcliffs/PDE-FIND,
https://github.com/eurika-kaiser/SINDY-MPC,
https://github.com/dynamicslab/SINDy-PI,
https://github.com/SchatzLabGT/SymbolicRegression,
https://github.com/dynamicslab/databook_python,
https://github.com/sheadan/SINDy-BVP,
https://github.com/sethhirsh/BayesianSindy,
https://github.com/racdale/sindyr,
https://github.com/SciML/DataDrivenDiffEq.jl,
https://github.com/MathBioCU/WSINDy_PDE,
https://github.com/pakreinbold/PDE_Discovery_Weak_Formulation,
https://github.com/ZIB-IOL/CINDy

https://github.com/snagcliffs/PDE-FIND
https://github.com/eurika-kaiser/SINDY-MPC
https://github.com/dynamicslab/SINDy-PI
https://github.com/SchatzLabGT/SymbolicRegression
https://github.com/dynamicslab/databook_python
https://github.com/sheadan/SINDy-BVP
https://github.com/sethhirsh/BayesianSindy
https://github.com/racdale/sindyr
https://github.com/SciML/DataDrivenDiffEq.jl
https://github.com/MathBioCU/WSINDy_PDE
https://github.com/pakreinbold/PDE_Discovery_Weak_Formulation
https://github.com/ZIB-IOL/CINDy
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The core SINDy object was designed to incorporate these three components in as modular a

manner as possible. The SINDy object has one attribute corresponding to each component:

SINDy.differentiation method for numerical differentiation, SINDy.feature library for

the formation of the candidate function library, and SINDy.optimizer for the sparse regres-

sor. PySINDy provides standard options and uses class inheritance for each step, making it

easy to construct new sophisticated or “third-party” algorithms. In particular, at the time of

writing, the methods in Fig. 6.1a have been implemented. In Fig. 6.1b the SINDy methods

are organized by functionality.

Given spatiotemporal data q(x, t) ∈ RM×N , and optional control inputs qu ∈ RM×Nu ,

PySINDy can now approximate algebraic systems of PDEs (and corresponding weak forms)

in up to 3 spatial dimensions. The system is described by a function g,

g(q, q̇, qx, qy, qxx, ..., qu) = 0. (6.1)

ODEs, implicit ODEs, PDEs, and other dynamical systems are subsets of Eq. (6.1). Control

terms and partial derivatives in the SINDy library can be accommodated by adding them as

columns in Θ(X), which becomes Θ(X, Ẋ,Xx, ...,Xu).

In addition, PySINDy has been extended to handle more complex modeling scenarios,

including trapping SINDy for provably stable ODE models for fluids described in Sec-

tions 5.3−5.7, models trained using multiple dynamic trajectories, and the generation of

many models with sub-sampling and ensembling methods for cross-validation and probabilis-

tic system identification. In order to solve Eq. (6.1), PySINDy implements several different

sparse regression algorithms. Greedy sparse regression algorithms, including step-wise sparse

regression (SSR) [48] and forward regression orthogonal least squares (FROLS) [43], are now

available. Figure 6.1 illustrates the PySINDy code structure, changes, and high-level goals

for future work.

PySINDy includes extensive Jupyter notebook tutorials that demonstrate the usage of

various features of the package and reproduce nearly the entirety of the examples from the
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Figure 6.1: Summary of SINDy features organized by (a) PySINDy structure and (b) function-
ality. (a) Hierarchy from the sparse regression problem solved by SINDy, to the submodules
of PySINDy, to the individual optimizers, libraries, and differentiation methods implemented
in the code. (b) Flow chart for organizing the SINDy variants and functionality in the lit-
erature. Bright color boxes indicate the features that have been implemented through this
work, roughly organized by functionality. Semi-transparent boxes indicate features that have
not yet been implemented.

original SINDy paper [59], trapping SINDy paper [209], and the PDE-FIND paper [376]. An

extended example is included for the quasiperiodic shear-driven cavity flow [70].

The goal of the PySINDy package is to enable anyone with access to measurement data to

engage in scientific model discovery. The package is designed to be accessible to inexperienced

users, adhere to scikit-learn standards, include most of the existing SINDy variations in

the literature, and provide a large variety of functionality for more advanced users. It is

hoped that these changes will encourage researchers to use and contribute to the code in the

future, pushing the boundaries of what is possible in system identification. For the remainder

of this chapter, the various optimizers, candidate libraries, and other advanced functionality

are explained with examples from the code. The chapter begins with a survey of the various



151

Optimizers Constraints PDEs Ensemble Control Systems Regularizers Params
sklearn × X X X all l1, l2 λ, (α)
STLSQ × X X X all l0, l2 λ, (α)
SR3 X X X X all l0, l1, l2 λ, κ
SSR × X X X all l0, l2 (κ), (α)
FROLS × X X X all l0, l2 (κ), (α)
SINDyPI × X X X implicit l1, l2 λ
Trapping X X X X fluids l1, l2 λ, ζ, γA

Table 6.1: Current capabilities of the SINDy optimizers implemented in PySINDy. Regular-
ization with l2 refers to the squared l2 norm, i.e. ridge regression. The notation (κ) indicates
the hyperparameter is optional. Bold font indicates a newly-implemented optimizer.

sparse regression optimizers.

6.2 A survey of sparse regression optimizers

The SINDy regression problem has been described in Eq. (5.3) and now a discussion is re-

quired to disambiguate between the wide range of sparse regression algorithms that can pro-

vide solutions to this regression problem. The original SINDy formulation solves Eq. (5.3)

with the l0 norm using a sequentially thresholded least squares (STLSQ) algorithm [59,

455]. Eq. (5.3) has also been solved with the l0, l1, and l2 norms with many different

sparse regression algorithms, including Lasso [423], sequentially thresholded ridge regression

(STRidge) [376], sparse relaxed regularized regression (SR3) [458, 82], stepwise sparse re-

gression (SSR) [48], Forward Regression Orthogonal Least Squares (FROLS) [43], blended

conditional gradients (BCG) [76], or Bayesian methods [456, 340, 319, 315, 173, 264, 299]. In

PySINDy, many of the optimizers allow for multiple regularizations, including l0, l1, l2, as well

as simple weighted variants that allow one to place stronger penalties on particular coeffi-

cients (more sophisticated weighted l1 regularization can be found in Cortiella et al. [95]). In

addition, users can use any of the objective formulations (linear model) in scikit-learn

(Lasso and ElasticNet use coordinate descent [446] and Ridge typically uses the conjugate

gradient algorithm [399]).
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The available optimizers are summarized in Table 6.1 and will be described in further

detail below. The optimizers can be divided into those that were originally used to solve

the nonconvex l0-regularized problem, and those that were originally used to solve the l1-

regularized problem (the Lasso problem). For instance, although the SR3 algorithm can

be used to solve the Lasso problem, SR3 fits more neatly into the former category because

it was originally used to improve performance by relaxing the nonconvex setting. In order

to illustrate the new optimizers, and before diving into the major changes required to ac-

commodate PDEs in Sec. 6.3.4, the Lorenz 1963 equations (5.40) are used as the dynamical

system.

6.2.1 l0 based sparse regression algorithms

The l0 norm is not strictly a norm; the l0 regularizer simply returns the number of nonzero

terms in the coefficients. Using the l0 norm typically produces sparser solutions than using

the l1 norm. This tends to further lead to higher performance and more stable models, since

there are no small-coefficient terms that can become active with new initial conditions or

parameter regimes. The downside is that the l0 norm transforms Eq. (5.3) into a nonconvex

problem, for which only local convergence guarantees can be provided.

Sequentially-thresholded least-squares

The original SINDy paper [59] used the sequentially-thresholded least-squares algorithm,

which has subsequentially been shown to converge rapidly to local minima [455]. This algo-

rithm starts with a least-squares solution for ξ and then thresholds all coefficients that are

smaller than the hyperparameter λ. The indices of the remaining non-zero coefficients are

identified and then another least-squares solution for ξ is obtained on the remaining indices.

The procedure is continued until the non-zero coefficients converge.
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Sequentially-thresholded ridge regression

A common issue with solving Eq. (5.3) is that the candidate library Θ is ill-conditioned.

STRidge typically obtains better performance than STLSQ by improving the condition

number of the linear system arising from the least squares problem. This is done by solving

Eq. (5.3) with an extra Tikhonov regularization [142] term α‖ξ‖2
2, with typical α� 1. It was

found empirically in Rudy et al. [376] to outperform STLSQ for PDE identification. STRidge

is actually the default method that is called through the STLSQ optimizer in PySINDy, and

only reduces to the true STLSQ method when α = 0.

SR3

Sparse relaxed regularized regression, or SR3, is an attempt to provide a relaxation-type

approach to the l0 problem. The idea is to introduce a new auxiliary variable W , and solve

a relax-and-split [457] version of the problem,

argmin
ξ,W

‖Ẋ −Θ(X)ξ‖2 + κ‖ξ −W ‖2
2 + λ‖W ‖0. (6.2)

In other words, perform the data fitting and the thresholding on two separate variables ξ and

W , and then use the strength of the κ hyperparameter to allow the coefficients to “relax”

into agreement. This approach is additionally advantageous because other regularizers and

model constraints can be added straightforwardly,

argmin
ξ,W

‖Ẋ −Θ(X)ξ‖2 + κ‖ξ −W ‖2
2 + λ‖W ‖0, (6.3)

Csξ ≤ d

The original work [82] analytically solved the equality-constraints problem at each itera-

tion. The implementation for both equality and inequality constraints is discussed further in

Sec. 6.3.2. Although SR3 introduces an extra hyperparameter, the default κ= 1 often works
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well. It also allows for a version of a “soft constraint”, since the hard constraint is applied

to ξ but the final sparse model coefficients are W .

Step-wise sparse regression

Step-wise sparse regression (SSR) is a greedy method for sparsifying the solution to the

least-squares SINDy optimization. Like STLSQ, the default is to use ridge regression but

α = 0 can be set to do pure least-squares. Instead of using a threshold parameter λ, SSR

truncates (zeros out) the “least important” coefficient in the model at each iteration, until

some criteria is met or no coefficients are left. Two SSR variants are implemented, where

the least important coefficient at each iteration is 1) the nonzero coefficient with smallest

absolute value [48], or 2) the coefficient which, when zeroed, results in a smaller model

with the lowest residual error (similar to Gurevich et al. [155]). New criteria for coefficient

sparsification can be easily added in the future. The advantage of SSR lies in its avoidance

of hyperparameters, which often need to be tuned for particular dynamical systems.

FROLS

Forward regression orthogonal least squares (FROLS) is another greedy algorithm used to

sparsify the solution to the SINDy ridge regression with the l0 norm [43, 70], and therefore

has similar drawbacks and benefits as SSR. FROLS iteratively selects the most correlated

function in the library. At each step, the candidate functions are orthogonalized with respect

to the already-selected functions. The selection criteria is the error reduction ratio, defined as

the normalized increase in explained output variance due to the addition of a given function

to the basis. In contrast to SSR, the algorithm starts with no terms and then adds terms

to the regression until all terms are included in the model. The best model is chosen by

computing all of the model mean-squared-errors, optionally weighted by an l0 penalty via

the parameter κ as in Rudy et al. [376]. This hyperparameter is an optional convenience;

regardless, all the generated models are returned to the user and they may choose a best

model according to any desired metric.
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Algorithm iterations

Figure 6.2: Illustration of the SSR model fit with training Lorenz data with 10% added
noise and shown here against a noise-free testing Lorenz trajectory. The algorithm begins
with all nonzero coefficients and at each new iteration the coefficient of the least important
term (according to some criteria) is set to zero. On the top of each slice, the mean-squared
error is tracked on a test trajectory as the algorithm progresses. Despite being quite sparse,
the model at algorithm iteration 7 illustrates the strongest MSE performance on the testing
trajectory. In the next iteration, the algorithm zeros out an essential dynamical term and
the quality of the fit drops sharply.
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6.2.2 l1 based sparse regression algorithms

Using the l1 norm has a great advantage − the optimization is convex. The downside is that

sparsity is harder to enforce, and the l1 norm can systematically bias the system towards

certain solutions. Nonetheless, a number of algorithms have found high performance with ver-

sions of the Lasso formulation [76]. The default algorithm for sklearn.linear model.Lasso

is coordinate descent.

SINDy-PI

There are a class of ordinary differential equations that are not amenable to the traditional

SINDy regression − implicit ODEs of the form

q̇(t) = f(q(t), q̇(t)). (6.4)

Implicit SINDy [273], and the more advanced SINDy-PI [201], are useful for identifying

implicit ODEs that depend on both X and Ẋ. The optimization strategy is fairly different

than the typical approach, solving the minimization

argmin
Ξ
‖Θ(X, Ẋ)−Θ(X, Ẋ)ξ‖2 + λ‖ξ‖1, s.t. diag(ξ) = 0. (6.5)

Solving the optimization problem in Eq. (6.5) generates pΘ differential algebraic equations

(DAEs), one equation for each of the candidate library terms. To illustrate the type of models

that can be identified with SINDy-PI (and not other methods), consider the relatively simple

Michaelis–Menten model for enzyme kinetics [198, 94]:

q̇ = 0.6− 3q − 10

3
qq̇, (6.6)

In order to implement SINDy-PI, a library is defined that takes as input two separate libraries

for X and Ẋ and tensor products them together. With a fourth order polynomial library
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in X (significant overkill) and a linear library in Ẋ, the algorithm approximately captures

the correct model,

q’ = 0.600 - 3.000 q - 3.300 qq’.

To integrate general DAEs, the native Python ODE solver can no longer be used. Instead,

the system is converted into a symbolic set of equations and either (1) solved symbolically

with SymPy [293] for q̇, after which the native ODE solver can be used, or (2) integrated with

the diffeqpy Python package [357], which requires the Julia programming language [39].

This is not built into the main source code. Finally, note that solving for a DAE for every

candidate library term can be computationally expensive, even though each optimization is

separate; in the original work, the computation is sped up with parallel computing. Instead,

an optional SINDyPI parameter model subset is implemented, which is an array of indices

that specifies a subset of the models to compute. Coupled with the new PySINDy capability to

calculate high-order spatial derivatives, SINDyPI could be used for solving implicit boundary

value problems as in Shea et al. [398] by changing all the temporal derivatives to spatial

ones. Coupled with the PDE functionality described in Sec. 6.3.4, SINDyPI could also be

used to identify very general partial differential algebraic equations (PDAEs).

6.3 Advanced functionality

Different options for sparse regression optimizers is helpful in some situations but does not

directly address the most common issue with these techniques, the presence of noise. In the

following sections, methods are illustrated that significantly increase the method robustness

to noise and facilitate very advanced system identification attempts.

6.3.1 Ensembling

One way to improve system identification methods on noisy data is simply to generate a large

number of models for different initial conditions, trajectories, noise levels, and more [123].

A final model can be chosen by the minimal error on the training or validation data, an
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average over the models (bagging), a median over all the models (bragging), and so on.

More formally, ensemble methods are the generation of nmodels by sparse regression onto

nsubset of the time samples in a signal. Both nmodels and nsubset are user-defined. The current

implementation chooses the subset of time points randomly; there is no issue that time points

may not be consecutive because the optimization is point-wise. The default implementation

is that nsubset =M , i.e. each sub-sampling uses the full temporal length but samples with

replacement. Typically this selects approximately 60% of the data with duplicates.

The PySINDy implementation of ensemble methods is done entirely behind the scenes.

The primary change with ensemble methods is that nmodels models are generated and can be

accessed via model.coef list. The post-processing is left to the user; common choices to

recombine the models are averaging (bagging), taking the median (bragging), or stability-

metrics such as in Maddu et al. [267].

Library ensemble methods, i.e. the generation of nmodels models by multiple regressions

onto different subsets of the full candidate library Θ, are also implemented. Instead of

specifying the subset of time slices to use, the number of terms to drop in Θ is specified

through n candidates to drop (the default is n candidates to drop = 1). The library

ensemble method can be done separately or together with ensemble. Figure 6.3 illustrates a

side-by-side comparison of the ensemble and library ensemble methods with different post-

processing methods (bagging, bragging, etc.). For fixed parameters, library ensembling leads

to predictably higher errors in the coefficients because key dynamic terms are missing in some

of the regressions (this effect is amplified because a very small library is used). Figure 6.4

shows the distribution of coefficients generated with 100 ensemble models and 100 library

ensemble models.

Finally, models can also be generated by ensembles of trajectories originating from dis-

parate initial conditions. Fortunately, the multiple trajectories parameter already allows

training on time series data from many trajectories. Using multiple trajectories with

ensemble is then already similar in spirit to generating models from different trajectories.
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Figure 6.3: Top: Summary of the ensemble (left column) and library ensemble (right column)
results using a quadratic polynomial library, the STLSQ optimizer, and the default ensemble
functionality on the Lorenz system with 1% added noise. The summary compares different
post-processing methods, including the average coefficient values (bagging), median coeffi-
cient values (bragging), weighted average by the mean-squared error of the fit, and weighted
average where short-time unstable models are removed from the averaging. Bottom: With
the same parameters, illustration of the Lorenz testing data predictions using the mean,
median, and 95th percentile models.
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Figure 6.4: Ensemble (blue) and library ensemble (pink) coefficient distributions for 100
Lorenz models generated separately with each method, with the same data as in Figure 6.3.



161

6.3.2 Equality and inequality constraints

Often, some details are already known about the dynamical system, such as energy con-

servation or a region of attraction. Building physical constraints into system identification

was already discussed in Sec. 5.1 and the formal optimization problem to solve is Eq. (5.6).

The constrained nonconvex problem (when Rs is the l0 norm) is effectively solved with a

relax-and-split technique [457], and this is the approach for SR3 and ConstrainedSR3. The

primary work is defining Cs and d, through constraint lhs and constraint rhs respec-

tively. Below, the x coefficient in the ẏ Lorenz equation is constrained to be exactly 28 and

the coefficients of x and y are constrained to be equal and opposite in the ẋ Lorenz equation,

which correctly generates:

x’ = -10.002 x + 10.002 y

y’ = 28.000 x - 1.003 y - 1.000 xz

z’ = -2.666 z + 0.999 xy

The fully constrained version of SR3 may be too restrictive for many cases, particularly

if the data is noisy. In the noisy case, exact satisfaction of a conservation law may not

be possible or result in a good fit of the data, so it may be preferable to use inequality

constraints. In PySINDy, using inequality constraints requires that the optimization remain

convex, i.e. the l1 or l2 regularizers must be used. In this case, the problem is solved with the

CVXPY [109] package. These details are hidden so that using inequality constraints are also

straightforward. The previous code is repeated, but instead of exactly equal and opposite

coefficients, the coefficients are required to be equal and opposite within a tolerance of 10−5.

The code correctly generates:

x’ = -10.002 x + 10.002 y

y’ = -0.015 1 + 27.991 x + -0.998 y + 0.002 z + -1.000 xz

z’ = 0.008 1 + 0.006 x + -0.004 y + -2.666 z + 0.001 x^2 + 0.999 xy
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x coefficient in x’ equation is -10.001643

y coefficient in x’ equation is 10.001653

Note that the error tolerance of the solver may need to be reduced in order to satisfy tight

inequality constraints. These are rather contrived examples, but the Example 8 Jupyter note-

book also contains code that computes the model constraint for energy-preserving quadratic

nonlinearities in fluids and plasmas for arbitrary state size. Figuring out how to input some

other constraint, or generalize it to arbitrary model dimension, will take some indexing work.

Lastly, the TrappingSR3 optimizer, based on the work in Sections 5.3−5.7, can also be used

with inequality constraints, and in fact reduces to ConstrainedSR3 in the limit that the

stability-promoting hyperparameter satisfies ζ� 1. In this sense, TrappingSR3 can also be

used for PDE identification and other tasks, but has no advantage over the other optimizers

in these applications since the stabilizing part of the algorithm goes unused.

6.3.3 Control variables

It is straightforward to incorporate external inputs and control variables into the SINDy

method; simply include terms depending on the control inputs qu in the library of candi-

date terms [66], Θ(q)→Θ(q, qu). To illustrate the use of control variables in PySINDy,

considering the following externally forced Lorenz system,

ẋ=−10x+ 10y + 100u2
0, (6.7)

ẏ = x(28− z)− y, (6.8)

ż = xy − 8

3
z − u1, (6.9)

where u0(t) = sin(2t) and u1(t) = t2. The code generates

x’ = -9.999 x + 9.999 y + 99.990 u0^2

y’ = 27.995 x - 1.000 y - 1.000 xz
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Figure 6.5: SINDy can accurately forecast the Lorenz system with external control inputs.

z’ = -2.666 z - 1.000 u1 + 1.000 xy

Note that, by default, the library of terms Θ treats the control inputs qu identically to

the state variables q. For this example, the library is quadratic in polynomials of q and

therefore all of the terms [u0, u1, u0x, u0y, u0z, u1x, u1y, u1z, u0u1, u
2
0, u

2
1] are added to Θ.

The downside of this behavior is that for higher-dimensional systems, or systems with large

libraries, treating qu like q can lead to many new terms. When different libraries for qu and

the inputs q are desired, one can use the GeneralizedLibrary, described below in Sec. 6.3.6.

To simulate forward a test trajectory with a new initial condition, there are two options,

passing the control function directly to the integrator or passing a time series of control inputs

to the integrator, which is subsequently interpolated onto the integration times. Clearly the

former option is a better choice if the functional form of the control input is known. The

simulation results for the controlled Lorenz system are illustrated in Fig. 6.5 and illustrate

high performance.
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6.3.4 PDE-FIND

So far, the focus has been on dynamical systems described by ordinary differential equations.

While some PDEs can be converted to ODEs through clever transforms, it remains that most

spatiotemporal systems are best described in a PDE framework. The original SINDy algo-

rithm was explicitly designed for the identification of ODEs from data, but SINDy applied to

PDEs is quite similar in flavor to the traditional method. No new optimizer is required, mean-

ing that all of the existing optimizers, as well as the ensemble and multiple trajectories

functionality, can be used. In order to retain the structure of Eq. (5.3), the data must be

flattened so that q(x, t) ∈ RM×N , where N is the state dimension of q and M contains the

rest of the dimensions. For instance, for a coupled PDE system of two variables, N = 2 and

M =Nx ×Ny ×Nz ×Mt for a spatiotemporal grid with Nx points in the x-direction, and so

on. In addition, the derivative matrix Ẋ (or Ẍ, etc.) must be provided to model.fit, since

the default code behavior is to take a temporal derivative throughout the entire flattened

dimension M of X.

To proceed, various spatial derivatives must be computed and incorporated into the li-

brary of terms Θ. Towards that goal, the user must specify the highest order of spatial

derivative desired, derivative order (defaults to 0 since weak-formulation ODEs can be

found with this PDELibrary class as well), the spatial grid spatial grid, and a library of

terms Θ(X) that will form the foundation of the PDE library. Up to fourth order spatial

derivatives are implemented with centered finite differences. High order derivatives increas-

ingly amplify noise and therefore provide less and less desirable candidates for regression.

Using finite difference techniques on a grid with spacing O(∆x), and noise with amplitude

O(εn), produces ith order derivatives with noise levels of approximately O(εn(∆x)−i).

Spatial PDEs in 1D, 2D, and 3D space were implemented, although in three spatial di-

mensions the library of derivative terms becomes quite large and the computations become

increasingly expensive. The number of partial derivatives for a ith order derivative in j di-

mensions is O(ij). All of this is complicated by the fact that derivative terms often appear
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together in a PDE; for instance ∇ · u contains j first derivative terms with the same co-

efficient. Rather than implement this separately, one can use model constraints with the

ConstrainedSR3 optimizer to require that the coefficients for each of the first derivatives are

the same. In the same way, one can use constraints to build in local conservation laws such

as ∇ · u= 0 or ∇ ·B = 0. For additional performance, the columns of Θ are normalized

for the optimization with the optional boolean parameter normalize columns; it was found

empirically in Rudy et al. [376] that this usually improves the model selection by rescaling

the columns of Θ to be similar magnitudes. This option has been subsequently added to

all PySINDy optimizers, although using normalize columns is not currently compatible with

using constraints.

All of the PDEs tested in the Example 10 Jupyter notebook are open-source datasets

taken directly from Rudy et al. [376]. With some cross-validation, the PDE-relevant opti-

mizers can successfully identify the 1D PDEs, including with some limited noise. For the

Kuramoto-Sivashinsky (KS) equation,

qt =−qqx − qxx − qxxxx, (6.10)

A model is trained on the first 60% of the data from Rudy et al. [376], which in total contains

1024 spatial grid points and 251 time steps. The KS model is identified correctly and the

prediction for q̇ on the remaining testing data indicates strong performance in Fig. 6.6. To

demonstrate a more advanced usage of this new functionality, consider the 2D reaction-

diffusion system on a periodic domain:

ut = u+ 0.1∇2u− (u2 + v2)(u− v), (6.11)

vt = v + 0.1∇2v − (u2 + v2)(u+ v).

Identical parameters to Rudy et al. [376] are used (x, y ∈ [−10, 10], t ∈ [0, 10], 201 time

points), except for a coarser grid of 128 spatial points. With ensembling, the mean and

standard deviation of the model coefficients can be plotted as in Fig. 6.7. Using each of the
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Figure 6.6: PySINDy can now be used for PDE identification. This new capability is il-
lustrated by accurately capturing a set of testing data from the Kuramoto-Sivashinsky sys-
tem, described by qt =−qqx − qxx − qxxxx. The identified model is qt =−0.98qqx − 0.99qxx −
1.0qxxxx.

different optimizers without ensembling generates:

STLSQ:

u’ = 1.013 u - 1.013 u^3 + 1.000 v^3 - 1.012 uv^2 + 0.999 u^2v

+ 0.101 u_xx + 0.102 u_yy

v’ = 1.013 v - 1.000 u^3 - 1.013 v^3 - 0.999 uv^2 - 1.013 u^2v

+ 0.102 v_xx + 0.101 v_yy

SR3 l0:

u’ = 1.013 u - 1.013 u^3 + 1.000 v^3 - 1.012 uv^2 + 0.999 u^2v

+ 0.101 u_xx + 0.102 u_yy

v’ = 1.013 v - 1.000 u^3 - 1.013 v^3 - 0.999 uv^2 - 1.013 u^2v

+ 0.102 v_xx + 0.101 v_yy

SR3 l1:

u’ = 1.013 u - 1.013 u^3 + 1.000 v^3 - 1.012 uv^2 + 0.999 u^2v

+ 0.101 u_xx + 0.102 u_yy

v’ = 1.013 v - 1.000 u^3 - 1.013 v^3 - 0.999 uv^2 - 1.013 u^2v

+ 0.102 v_xx + 0.101 v_yy

FROLS:

u’ = 0.994 u - 0.049 v - 0.992 u^3 + 1.048 v^3 - 0.991 uv^2 + 1.047 u^2v
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Figure 6.7: Mean and standard deviation computed from the ensembling SINDy models for
the reaction-diffusion system.

+ 0.102 u_xx - 0.005 v_xx + 0.101 u_yy - 0.005 v_yy

v’ = 0.048 u + 0.994 v - 1.048 u^3 - 0.992 v^3 - 1.047 uv^2 - 0.992 u^2v

+ 0.005 u_xx + 0.101 v_xx + 0.005 u_yy + 0.102 v_yy

ConstrainedSR3:

u’ = 0.995 u - 0.993 u^3 + 1.054 v^3 - 0.993 uv^2 + 1.054 u^2v

+ 0.101 u_xx + 0.101 u_yy

v’ = 0.995 v - 1.054 u^3 - 0.993 v^3 - 1.054 uv^2 - 0.993 u^2v

+ 0.101 v_xx + 0.101 v_yy

All of the optimizers essentially capture the true PDE model in Eq. (6.11). FROLS

overfits slightly, but additional sparsity can be obtained by increasing the sparsity penalty

κ or cross-validation by scanning over this parameter. Notice that constraints were used in

ConstrainedSR3 to guarantee that the coefficients for uxx and uyy (and similarly for v) are

the same, giving us a pure Laplacian term. To the author’s knowledge, this is the first use of

SR3 or FROLS for PDE system identification and the first use of SINDy constraints for PDE

model identification.

6.3.5 Weak-form, integral SINDy

In the previous section, it was noted that the computation of high-order spatial derivatives

is increasingly affected by noise in the data, leading to poor performance on noisy data. In
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order to make PDE system identification more robust, Schaeffer et al. [385] introduced an

integral form of SINDy that can identify PDE weak forms. If Eq. (5.3) is multiplied by

a spatiotemporal weight w(x, t) and integrated over some spatiotemporal domain Ωk, one

obtains

∫
Ωk

w(x, t) · ∂tq(x, t)dS =−
∫

Ωk

∂tw(x, t) · q(x, t)dS := Q̇(t) (6.12)

≈

(∫
Ωk

w(x, t) ·Θ(q(x, t))dS

)
ξ := ΘQξ.

Critically, as was used in Eq. (6.12), the spatiotemporal weight w can be chosen to be

smooth and vanish on Ωk. Many of the derivative terms in Θ(q(x, t)) can be integrated by

parts so that the derivatives apply to w, greatly reducing the noise amplification coming

from derivatives of any noisy data. Now this process is repeated for Kd different choices of

Ωk, choosing each Ωk to be a cube centered at (xk, yk, tk) with width Hx, height Hy, and

depth Ht (the precise geometry of Ωk is not important so cubes are convenient). Following

Reinbold et al. [365], a sufficient, smooth function that vanishes on the edges of Ωk is wk =

(x̃2 − 1)P (ỹ2 − 1)P (t̃2 − 1)P for some polynomial P , normalized x̃= (x− xk)/Hx, normalized

ỹ = (y − yk)/Hy, and normalized t̃= (t− tk)/Ht. The generalizations to spatial dimensions

other than 2D is straightforward. Arbitrary order polynomials are permitted although P = 4

is the default for compatibility with up to fourth order spatial derivatives. Using finite

differences on wk still amplifies the numerical noise from the grid. Fortunately, the simple

form of wk allows us to use the analytic form for derivatives of wk. Errors from the numerical

approximations of the integrals can be reduced by using more points in the integration.

Stacking the results from Kd ≥ pΘ domains, the sparse regression problem becomes

Q̇≈ΘQξ, Q̇ ∈ RKd×N , ΘQ ∈ RKd×pΘ , ξ ∈ RpΘ×N . (6.13)

The optional boolean parameter weak form in the PDELibrary turns on this behavior. The
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MSE on test
trajectory

Figure 6.8: Illustration that as the number of subdomain points increases (the numerical
approximation of the integrals in Eq. (6.13) is improving) and the number of subdomains
Kd increases (the number of points to fit in the regression is increasing), the weak form
implementation in PySINDy converges to better and better dynamical models. All models
were generated with the same data − the Lorenz system with 20% added noise.

user can also specify Kd, the spatial grid, the temporal grid, Hx, Hy, Ht, and the number of

integration points in each subdomain Nsub. If these parameters are not specified, the default

weak form usage is that Kd = 100 subdomains are randomly selected, with Hx = Lx/20, Hy =

Ly/20, Ht = Lt/20, Nsub = 100 (Lx and Ly being the lengths of the entire spatial domain,

and Lt the temporal duration of the training data), such that no subdomain Ωk overlaps

with or passes through a boundary. If the KS equation in Eq. (6.10) is now revisited, one

can illustrate how the coefficients of the model change as a function of added noise, as in

Figure 6.9.

6.3.6 Generalized and tailored candidate libraries

A common issue is that the SINDy candidate library Θ grows combinatorically with the

addition of new terms. Moreover, the addition of control inputs in Sec. 6.3.3 and the addition
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Figure 6.9: Error in the KS equation coefficients, defined through ∆ξuux = |ξtrue
uux −

ξpred
uux |/ξ

true
uux = |1− ξpred

uux |. The models are quite robust even with very high (50%) added
noise.

of 1, 2, or 3D spatial derivatives in Sec. 6.3.4 further exacerbates this issue. To see the issue

here, consider a model that is up to quadratic in polynomials for a spatially-2D system of

four PDEs. Suppose that up to second order derivatives are desired and candidate terms

are postulated to include mixed-derivative terms and an external potential depending on the

spatial coordinates x. For this situation, the input to a PolynomialLibrary (ignore for the

moment that the default PySINDy libraries cannot handle such an input) would be

qadvanced = [q, qx, qy, qxx, qxy, qyy, x], (6.14)

where each variable is actually in a 4D state space (except x, which is 2D). The default is that

PolynomialLibrary generates quadratic polynomials for each of these inputs, including all

possible mixed terms. Therefore, qadvanced ∈ RM×26, and Θ ∈ RM×378. Recall that in the PDE

formulation M =Nx ×Ny ×Mt, so for a reasonable dataset, M ∼ 106. One can see that this

data is getting large and unwieldy. Furthermore, it would be useful if there was a systematic

way to efficiently generate different libraries for different column inputs in Eq. (6.14); one
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might expect Fourier dependence on q but polynomial dependence in x.

Towards that end, a GeneralizedLibrary class was implemented, which relies on the

ConcatLibrary and TensoredLibrary classes. A ConcatLibrary is generated from the

concatenation of two existing PySINDy library objects, so that the candidate terms of both

libraries are included in a single ConcatLibrary. In contrast, a TensoredLibrary is gener-

ated from the tensor product of the columns of two existing PySINDy library objects, so that

every pair of candidate terms from the two libraries are multiplied together, and their prod-

uct is added to the new TensoredLibrary. Fully utilizing the GeneralizedLibrary class

requires: (1) a number of different libraries to stitch together, (2) a list of input variables

that specifies which variables should be used to generate each library, (3) a list of which

libraries to tensor together and add to the overall library. With this new functionality, one

could define candidate libraries that are very tailored. For instance, one can fairly easily

generate a very complex GeneralizedLibrary consisting of: a cubic polynomial library for

the q1, a custom library for q2, a different custom library for the qx, a Fourier library for qy,

a quadratic polynomial library for the spatial coordinates x, a linear polynomial library for

a set of control inputs qu, and any libraries obtained from tensoring together the previous

libraries. This new functionality reduces the number of candidate terms and facilitates the

use of very different candidate terms for each of the input features.

6.4 Closing remarks on robust system identification

All of this new and advanced functionality is useful for facilitating a broad range of system

identification tasks across a wide range of scientific disciplines. However, for new users or

scientists unfamiliar with many of these methods, it can be hard to decipher which meth-

ods are appropriate for their data. Towards that end, a user-friendly flow chart is illus-

trated in Fig. 6.10. If significant flexibility and tailoring is required in the candidate library,

GeneralizedLibrary is recommended, despite it being harder to use than most of the other

libraries.

There remain a number of SINDy variants and improvements that could be valuable to
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Figure 6.10: This flow chart summarizes how PySINDy users can start with a dataset and
systematically choose the proper candidate library and sparse regression optimizer that are
tailored for a specific scientific task.
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incorporate into PySINDy in the future. Currently, high-order spatial derivatives can only

be computed with finite differences in PySINDy, meaning that with any significant noise one

must adopt the weak form PDE method, which can be computationally expensive. One

solution to this problem is to learn both the unknown dynamics and the underlying noise

distribution [377, 200]. A more common solution is to improve the quality of the high-

order derivatives, reducing the noise amplification. This can be done to varying degrees by

smoothing with a Gaussian kernel, total variation [375], Tikhonov differentiation [89], poly-

nomial interpolation [56, 18], spline interpolation [410], or spectral methods [146] (the latter

two methods are actually already available in PySINDy and can be extended to higher-order

derivatives ). Considerable progress could be made by adopting a fully symbolic problem for-

mulation [173], and then using automatic differentiation [27] to achieve arbitrary precision

derivatives. Promising research with high-dimensional systems includes stochastic meth-

ods [55, 71] and tensor libraries [135, 137]. Lastly, SINDy is increasingly incorporated with

model-predictive control (MPC) [204, 387, 260, 122]. Incorporating basic MPC functionality

into PySINDy would be a valuable addition to the code.
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Chapter 7

SUMMARY AND CONCLUSIONS

This work has applied a broad set of machine learning methods for learning ROMs and

performing prediction tasks in fluid and plasma systems. Linear data-driven models such

as the dynamic mode decomposition appear useful for linear plasma models and magnetic

spectroscopy, and future work should build additional connections with linear plasma sta-

bility and subspace system identification. It was further shown how to compute nonlinear,

analytic, and data-driven fluid and plasma models that, by construction, satisfy global or

local conservation laws. For instance, Sec. 5.2 illustrated globally energy-preserving models

that accurately forecast fully 3D, isothermal, Hall-MHD simulations of the HIT-SI device.

Moreover, a new system identification method was introduced that can produce nonlinear,

data-driven models that are long-term bounded for any new initial condition; as far as the

author is aware, this has not been done before in any nonlinear systems field. Furthermore,

the theorem used for stability promotion relied only the identification of a suitable quadratic

Lyapunov function, so work is in progress to extend this for flows that preserve a quan-

tity other than the energy. For instance, there are nonlinear MHD flows that can preserve

the magnetic helicity while not preserving the energy. Lastly, there are many other system

identification methods that improve the robustness of extracting models from data. Many

advanced routines have been incorporated into the open-source PySINDy code, which will

continue to provide examples and advanced tools for anyone interested in applying system

identification to a dataset. Some of this advanced functionality is brand new in the literature

and can facilitate new system identification discoveries.

In total, this thesis investigated a number of machine learning methods for plasma physics

applications, invented new types of reduced-order modeling, and illustrated how these mod-
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ern techniques can be valuable in plasma physics and related scientific fields.

7.1 Future machine learning work for plasmas

There is still significant work to be done exploring the strengths and limitations of many

of these methods for plasmas in different physical parameter regimes; ROMs for inertial

confinement fusion will inevitably be different than those for magnetic confinement fusion,

or those for low-temperature plasma etching. Since linear stability is so central to plasma

physics, especially fusion-relevant plasmas, connecting these methods to the broad analytic

literature in linear plasma stability and comparing forms of DMD and SSI would be very

useful. Such a follow-up is now underway as part of a new NSF project based on the work

presented in this thesis.

In particular, significant progress in understanding the strength and usefulness of these

reduced-order models could be made by applying many of these techniques on a number of

canonical plasma physics problems, including reconnection in driven [115, 160] and plasmoid

generating [42, 331] current sheets and MHD vortex shedding simulations [110, 151, 379].

There remain open questions about if ROMs can correctly reproduce the qualitative features

of different fluid and plasma models. For instance, future work should emphasize understand-

ing how these models alter or retain the “direct energy cascade” coming from the interaction

of terms in the Navier-Stokes equations, since often some of the dissipative scales of the

system are smoothed, truncated, or otherwise modified. Preserving the features of the direct

energy cascade in truncated Galerkin and data-driven models for incompressible fluid flows is

a current field of research. Since even this “simple case” is unsettled, there is much research

to be done in truncated Galerkin models for resistive or Hall-MHD. In resistive MHD the

Kolmogorov direct cascade is modified either to a GS95 cascade [138, 139], or dynamical

alignment [389]. The theory of dynamical alignment predicts a particularly complicated di-

rect cascade that would be presumably very difficult to capture with data-driven reduced

order models. In Hall-MHD there can additionally be inverse cascades and bidirectional

cascades [352], further complicating the analysis of model stability and generalizability.
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Long term goals of this avenue of research include: evaluating the effectiveness of ad-

vanced data decompositions for providing new physical insight into plasma dynamics, find-

ing nonlinear models for plasma dynamics in the subsequent low-dimensional bases – purely

from measurements, theoretical constraints, and physical symmetries, and using the same

bases to find optimal sensor placements for experimental devices and sensor “paths” for

spacecraft. Although the latter was not discussed in this work, there has been a modern

revolution in sparse sensor placement algorithms [57, 275, 92, 334] that could be very useful

for fusion-relevant plasmas where measurements and diagnostic access are limited, and opti-

mizing diagnostic placement can lead to significant improvements in diagnostic capabilities,

diagnostic resilience, and physical understanding [308].
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Conditional gradient-based identification of non-linear dynamics – noise-robust recov-
ery, 2021.

[77] Kevin Carlberg, Matthew Barone, and Harbir Antil. Galerkin v. least-squares Petrov–
Galerkin projection in nonlinear model reduction. Journal of Computational Physics,
330:693–734, 2017.

[78] Kevin Carlberg, Charbel Bou-Mosleh, and Charbel Farhat. Efficient non-linear model
reduction via a least-squares Petrov–Galerkin projection and compressive tensor ap-
proximations. International Journal for numerical methods in engineering, 86(2):155–
181, 2011.

[79] Kevin Carlberg, Charbel Farhat, Julien Cortial, and David Amsallem. The GNAT
method for nonlinear model reduction: effective implementation and application to
computational fluid dynamics and turbulent flows. Journal of Computational Physics,
242:623–647, 2013.

[80] Kevin Carlberg, Ray Tuminaro, and Paul Boggs. Preserving Lagrangian structure in
nonlinear model reduction with application to structural dynamics. SIAM Journal on
Scientific Computing, 37(2):B153–B184, 2015.

[81] Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Data-
driven discovery of coordinates and governing equations. Proceedings of the National
Academy of Sciences, 116(45):22445–22451, 2019.

[82] Kathleen Champion, Peng Zheng, Aleksandr Y Aravkin, Steven L Brunton, and
J Nathan Kutz. A unified sparse optimization framework to learn parsimonious physics-
informed models from data. IEEE Access, 8:169259–169271, 2020.



184

[83] Haibin Chang and Dongxiao Zhang. Machine learning subsurface flow equations from
data. Computational Geosciences, 23(5):895–910, 2019.

[84] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural Lyapunov control. arXiv
preprint arXiv:2005.00611, 2020.

[85] Saifon Chaturantabut and Danny C Sorensen. Discrete empirical interpolation for
nonlinear model reduction. In Proceedings of the 48th IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pages
4316–4321. IEEE, 2009.

[86] Liu Chen and Fulvio Zonca. Physics of Alfvén waves and energetic particles in burning
plasmas. Reviews of Modern Physics, 88(1):015008, 2016.

[87] CZ Cheng and MS Chance. Low-n shear Alfvén spectra in axisymmetric toroidal
plasmas. The Physics of fluids, 29(11):3695–3701, 1986.

[88] CZ Cheng, Liu Chen, and MS Chance. High-n ideal and resistive shear Alfvén waves
in tokamaks. Annals of Physics, 161(1):21–47, 1985.

[89] J Cheng, XZ Jia, and YB Wang. Numerical differentiation and its applications. Inverse
problems in Science and Engineering, 15(4):339–357, 2007.

[90] Hoang K Chu and Mitsuhiro Hayashibe. Discovering interpretable dynamics by sparsity
promotion on energy and the Lagrangian. IEEE Robotics and Automation Letters,
5(2):2154–2160, 2020.

[91] Jonathan Citrin, Sarah Breton, Federico Felici, Frederic Imbeaux, T Aniel, JF Artaud,
B Baiocchi, C Bourdelle, Y Camenen, and J Garcia. Real-time capable first principle
based modelling of tokamak turbulent transport. Nuclear Fusion, 55(9):092001, 2015.

[92] Emily Clark, Travis Askham, Steven L Brunton, and J Nathan Kutz. Greedy sensor
placement with cost constraints. IEEE Sensors Journal, 19(7):2642–2656, 2018.

[93] Clawpack Development Team. Clawpack software, 2020. Version 5.7.1.

[94] Athel Cornish-Bowden. One hundred years of Michaelis–Menten kinetics. Perspectives
in Science, 4:3–9, 2015.

[95] Alexandre Cortiella, Kwang-Chun Park, and Alireza Doostan. Sparse identification
of nonlinear dynamical systems via reweighted l1-regularized least squares. Computer
Methods in Applied Mechanics and Engineering, 376:113620, 2021.



185

[96] M Couplet, P Sagaut, and C Basdevant. Intermodal energy transfers in a proper or-
thogonal decomposition-Galerkin representation of a turbulent separated flow. Journal
of Fluid Mechanics, 491:275, 2003.

[97] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and
Shirley Ho. Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

[98] Miles D Cranmer, Rui Xu, Peter Battaglia, and Shirley Ho. Learning symbolic physics
with graph networks. arXiv preprint arXiv:1909.05862, 2019.

[99] Rick Dale and Harish S Bhat. Equations of mind: Data science for inferring nonlinear
dynamics of socio-cognitive systems. Cognitive Systems Research, 52:275–290, 2018.

[100] Magnus Dam, Morten Brøns, Jens Juul Rasmussen, Volker Naulin, and Jan S Hes-
thaven. Sparse identification of a predator-prey system from simulation data of a
convection model. Physics of Plasmas, 24(2):022310, 2017.

[101] Scott TM Dawson, Maziar S Hemati, Matthew O Williams, and Clarence W Row-
ley. Characterizing and correcting for the effect of sensor noise in the dynamic mode
decomposition. Experiments in Fluids, 57(3):1–19, 2016.
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[225] Sumire Kobayashi, Özgür D Gürcan, and Patrick H Diamond. Direct identification of
predator-prey dynamics in gyrokinetic simulations. Physics of Plasmas, 22(9):090702,
2015.

[226] Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and
Stephan Hoyer. Machine learning–accelerated computational fluid dynamics. Proceed-
ings of the National Academy of Sciences, 118(21), 2021.

[227] E Kolemen, SL Allen, BD Bray, ME Fenstermacher, DA Humphreys, AW Hyatt,
CJ Lasnier, AW Leonard, MA Makowski, AG McLean, et al. Heat flux management
via advanced magnetic divertor configurations and divertor detachment. Journal of
Nuclear Materials, 463:1186–1190, 2015.

[228] J Zico Kolter and Gaurav Manek. Learning stable deep dynamics models. In Advances
in Neural Information Processing Systems, volume 32, pages 11128–11136, 2019.



197

[229] B. O. Koopman. Hamiltonian systems and transformation in Hilbert space. Proceedings
of the National Academy of Sciences, 17(5):315–318, 1931.

[230] R. H. Kraichnan and S. Chen. Is there a statistical mechanics of turbulence? Physica
D: Nonlinear Phenomena, 37:160–172, 1989.

[231] Boris Kramer. Stability domains for quadratic-bilinear reduced-order models. SIAM
Journal on Applied Dynamical Systems, 20(2):981–996, 2021.

[232] Richard Michael Jack Kramer, Eric C Cyr, Sean Miller, Edward Geoffrey Phillips,
Gregg Arthur Radtke, Allen C Robinson, and John N Shadid. A plasma modeling
hierarchy and verification approach. 2020.

[233] R Kube, RM Churchill, and B Sturdevant. Machine learning accelerated particle-in-cell
plasma simulations. arXiv preprint arXiv:2110.12444, 2021.

[234] Akira Kusaba, Tetsuji Kuboyama, and Shigeru Inagaki. Sparsity-promoting dynamic
mode decomposition of plasma turbulence. Plasma and Fusion Research, 15:1301001–
1301001, 2020.

[235] J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proctor. Dynamic
mode decomposition: data-driven modeling of complex systems, volume 149. SIAM,
2016.

[236] J Nathan Kutz, Xing Fu, and Steven L Brunton. Multiresolution dynamic mode
decomposition. SIAM Journal on Applied Dynamical Systems, 15(2):713–735, 2016.

[237] John H Lagergren, John T Nardini, G Michael Lavigne, Erica M Rutter, and Kevin B
Flores. Learning partial differential equations for biological transport models from
noisy spatio-temporal data. Proceedings of the Royal Society A, 476(2234):20190800,
2020.

[238] Zhilu Lai and Satish Nagarajaiah. Sparse structural system identification method for
nonlinear dynamic systems with hysteresis/inelastic behavior. Mechanical Systems and
Signal Processing, 117:813–842, 2019.

[239] PT Lang, AW Degeling, JB Lister, YR Martin, PJ Mc Carthy, ACC Sips, W Suttrop,
GD Conway, L Fattorini, O Gruber, et al. Frequency control of type-I ELMs by mag-
netic triggering in ASDEX upgrade. Plasma physics and controlled fusion, 46(11):L31,
2004.



198

[240] LL Lao, H St John, RD Stambaugh, AG Kellman, and W Pfeiffer. Reconstruction of
current profile parameters and plasma shapes in tokamaks. Nuclear fusion, 25(11):1611,
1985.

[241] Davide Lasagna, Deqing Huang, Owen R Tutty, and Sergei Chernyshenko. Sum-of-
squares approach to feedback control of laminar wake flows. Journal of Fluid Mechan-
ics, 809:628–663, 2016.

[242] Kookjin Lee and Kevin Carlberg. Deep conservation: A latent-dynamics model for
exact satisfaction of physical conservation laws. arXiv preprint arXiv:1909.09754, 2019.

[243] Kookjin Lee and Kevin T Carlberg. Model reduction of dynamical systems on nonlinear
manifolds using deep convolutional autoencoders. Journal of Computational Physics,
404:108973, 2020.

[244] Thomas Lessinnes, Franck Plunian, and Daniele Carati. Helical shell models for MHD.
Theoretical and Computational Fluid Dynamics, 23(6):439–450, 2009.

[245] Kenneth Levenberg. A method for the solution of certain non-linear problems in least
squares. Quarterly of applied mathematics, 2(2):164–168, 1944.

[246] JP Levesque, N Rath, D Shiraki, S Angelini, J Bialek, PJ Byrne, BA DeBono,
PE Hughes, ME Mauel, GA Navratil, et al. Multimode observations and 3D mag-
netic control of the boundary of a tokamak plasma. Nuclear Fusion, 53(7):073037,
2013.

[247] William E Lewis, Patrick F Knapp, Stephen A Slutz, Paul F Schmit, Gordon A Chan-
dler, Matthew R Gomez, Adam J Harvey-Thompson, Michael A Mangan, David J
Ampleford, and Kristian Beckwith. Deep-learning-enabled Bayesian inference of fuel
magnetization in magnetized liner inertial fusion. Physics of Plasmas, 28(9):092701,
2021.

[248] Pan Li, Yadong Li, Jiangang Li, Guojiang Wu, Wei Chen, Jingsen Geng, Fei Chen,
Yuhao Wang, Bin Zhang, Liqing Xu, et al. Dynamics between toroidal Alfvén eigen-
mode evolution and turbulence suppression under RMP on EAST. Nuclear Fusion,
2021.

[249] Qianxiao Li, Felix Dietrich, Erik M. Bollt, and Ioannis G. Kevrekidis. Extended dy-
namic mode decomposition with dictionary learning: A data-driven adaptive spectral
decomposition of the Koopman operator. Chaos: An Interdisciplinary Journal of Non-
linear Science, 27(10):103111, 2017.



199

[250] Shanwu Li, Eurika Kaiser, Shujin Laima, Hui Li, Steven L Brunton, and J Nathan
Kutz. Discovering time-varying aerodynamics of a prototype bridge by sparse identi-
fication of nonlinear dynamical systems. Physical Review E, 100(2):022220, 2019.

[251] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for para-
metric partial differential equations. arXiv preprint arXiv:2010.08895, 2020.

[252] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark
Tygert. Randomized algorithms for the low-rank approximation of matrices. Proceed-
ings of the National Academy of Sciences, 104(51):20167–20172, 2007.

[253] Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged turbulence
modelling using deep neural networks with embedded invariance. Journal of Fluid
Mechanics, 807:155–166, 2016.

[254] Tong Liu, ZR Wang, Mark D Boyer, Stefano Munaretto, Zheng-Xiong Wang, B-H
Park, NC Logan, SeongMoo Yang, and J-K Park. Identification of multiple eigenmode
growth rates towards real time detection in DIII-D and KSTAR tokamak plasmas.
Nuclear Fusion, 61(5):056009, 2021.

[255] A Loarte, B Lipschultz, AS Kukushkin, GF Matthews, PC Stangeby, N Asakura,
GF Counsell, G Federici, A Kallenbach, K Krieger, et al. Power and particle control.
Nuclear Fusion, 47(6):S203, 2007.

[256] Jean-Christophe Loiseau. Data-driven modeling of the chaotic thermal convection in
an annular thermosyphon. Theoretical and Computational Fluid Dynamics, 34(4):339–
365, 2020.

[257] Jean-Christophe Loiseau and Steven L Brunton. Constrained sparse Galerkin regres-
sion. Journal of Fluid Mechanics, 838:42–67, 2018.

[258] Jean-Christophe Loiseau, Steven L Brunton, and Bernd R Noack. From the POD-
Galerkin method to sparse manifold models. Handbook of Model-Order Reduction,
2:1–47, 2019.

[259] Jean-Christophe Loiseau, Bernd R Noack, and Steven L Brunton. Sparse reduced-order
modeling: sensor-based dynamics to full-state estimation. Journal of Fluid Mechanics,
844:459–490, 2018.

[260] Jeremy Lore, Sebastian De Pascuale, Paul Laiu, Birdy Phathanapirom, Steven Brun-
ton, John Canik, Sacit Cetiner, Nathan Kutz, and Peter Stangeby. Model predictive



200

control of boundary plasmas using reduced models derived from SOLPS-ITER. Bul-
letin of the American Physical Society, 2021.

[261] Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences,
20(2):130–141, 1963.

[262] Stefano Lorenzi, Antonio Cammi, Lelio Luzzi, and Gianluigi Rozza. POD-Galerkin
method for finite volume approximation of Navier–Stokes and RANS equations. Com-
puter Methods in Applied Mechanics and Engineering, 311:151–179, 2016.

[263] John Loverich, Ammar Hakim, and Uri Shumlak. A discontinuous Galerkin method
for ideal two-fluid plasma equations. Communications in Computational Physics,
9(2):240–268, 2011.

[264] Peter Lu and Pierre FJ Lermusiaux. Bayesian learning of stochastic dynamical models.
Physica D: Nonlinear Phenomena, page 133003, 2021.

[265] Mitul Luhar, Ati S Sharma, and Beverley J McKeon. Opposition control within the
resolvent analysis framework. Journal of Fluid Mechanics, 749:597–626, 2014.

[266] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal
linear embeddings of nonlinear dynamics. Nature communications, 9(1):1–10, 2018.

[267] Suryanarayana Maddu, Bevan L Cheeseman, Ivo F Sbalzarini, and Christian L Müller.
Stability selection enables robust learning of partial differential equations from limited
noisy data. arXiv preprint arXiv:1907.07810, 2019.

[268] B Madsen, M Salewski, WW Heidbrink, L Stagner, M Podestà, D Lin, AV Garcia,
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of molecular kinetics. Nature Communications, 9(5), 2018.

[278] Donald W Marquardt. An algorithm for least-squares estimation of nonlinear param-
eters. Journal of the society for Industrial and Applied Mathematics, 11(2):431–441,
1963.

[279] Stefano Massaroli, Michael Poli, Michelangelo Bin, Jinkyoo Park, Atsushi Yamashita,
and Hajime Asama. Stable neural flows. arXiv preprint arXiv:2003.08063, 2020.

[280] Francisco A Matos, Diogo R Ferreira, Pedro J Carvalho, and JET Contributors. Deep
learning for plasma tomography using the bolometer system at JET. Fusion engineering
and design, 114:18–25, 2017.

[281] Romit Maulik, Omer San, Adil Rasheed, and Prakash Vedula. Subgrid modelling
for two-dimensional turbulence using neural networks. Journal of Fluid Mechanics,
858:122–144, 2019.

[282] RM Mayo and GJ Marklin. Numerical calculation of Mercier beta limits in spheromaks.
The Physics of fluids, 31(6):1812–1815, 1988.

[283] William D McComb. The physics of fluid turbulence. Oxford, 1990.



202

[284] Beverley J McKeon and Ati S Sharma. A critical-layer framework for turbulent pipe
flow. Journal of Fluid Mechanics, 658:336, 2010.

[285] E T Meier, R J Goldston, E G Kaveeva, M A Makowski, S Mordijck, V A Rozhansky,
I Yu Senichenkov, and S P Voskoboynikov. Analysis of drift effects on the tokamak
power scrape-off width using SOLPS-ITER. Plasma Physics and Controlled Fusion,
58(12):125012, 2016.

[286] MA Mendez, M Balabane, and J-M Buchlin. Multi-scale proper orthogonal decompo-
sition of complex fluid flows. Journal of Fluid Mechanics, 870:988–1036, 2019.

[287] Ariana Mendible, Steven L Brunton, Aleksandr Y Aravkin, Wes Lowrie, and J Nathan
Kutz. Dimensionality reduction and reduced-order modeling for traveling wave physics.
Theoretical and Computational Fluid Dynamics, 34(4):385–400, 2020.

[288] Claude Mercier. On a representation of toroidal surfaces. applications to magnetohy-
drodynamic equilibria. Nuclear Fusion, 3(2):89, 1963.

[289] Claude Mercier. Equilibrium and stability of a toroidal magnetohydrodynamic system
in the neighbourhood of a magnetic axis. Nuclear Fusion, 4(3):213, 1964.

[290] Daniel A Messenger and David M Bortz. Learning mean-field equations from particle
data using WSINDy. arXiv preprint arXiv:2110.07756, 2021.

[291] Daniel A Messenger and David M Bortz. Weak SINDy for partial differential equations.
Journal of Computational Physics, page 110525, 2021.

[292] Daniel A Messenger and David M Bortz. Weak SINDy: Galerkin-based data-driven
model selection. Multiscale Modeling & Simulation, 19(3):1474–1497, 2021.

[293] Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čert́ık, Sergey B Kir-
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Frank Noé. Variational approach to molecular kinetics. Journal of chemical theory and
computation, 10(4):1739–1752, 2014.

[327] J B O’Bryan and C R Sovinec. Simulated flux-rope evolution during non-inductive
startup in Pegasus. Plasma Physics and Controlled Fusion, 56(6):064005, 2014.

[328] O. Ohia, J. Egedal, V. S. Lukin, W. Daughton, and A. Le. Demonstration of anisotropic
fluid closure capturing the kinetic structure of magnetic reconnection. Phys. Rev. Lett.,
109:115004, Sep 2012.

[329] K Erik J Olofsson, Per R Brunsell, and James R Drake. Experimental modal analysis
of resistive wall toroidal pinch plasma dynamics. Nuclear Fusion, 53(7):072003, 2013.



206

[330] K Erik J Olofsson, Jeremy M Hanson, Daisuke Shiraki, Francesco A Volpe, David A
Humphreys, Robert J La Haye, Matthew J Lanctot, Edward J Strait, Anders S We-
lander, Egemen Kolemen, et al. Array magnetics modal analysis for the DIII-D toka-
mak based on localized time-series modelling. Plasma Physics and Controlled Fusion,
56(9):095012, 2014.

[331] J. Olson, J. Egedal, S. Greess, R. Myers, M. Clark, D. Endrizzi, K. Flanagan, J. Mil-
hone, E. Peterson, J. Wallace, D. Weisberg, and C. B. Forest. Experimental demonstra-
tion of the collisionless plasmoid instability below the ion kinetic scale during magnetic
reconnection. Phys. Rev. Lett., 116:255001, Jun 2016.

[332] Y. Ono, H. Tanabe, Y. Hayashi, T. Ii, Y. Narushima, T. Yamada, M. Inomoto, and
C. Z. Cheng. Ion and electron heating characteristics of magnetic reconnection in a
two flux loop merging experiment. Phys. Rev. Lett., 107:185001, Oct 2011.

[333] Samuel E Otto and Clarence W Rowley. Linearly recurrent autoencoder networks
for learning dynamics. SIAM Journal on Applied Dynamical Systems, 18(1):558–593,
2019.

[334] Samuel E Otto and Clarence W Rowley. Inadequacy of linear methods for minimal
sensor placement and feature selection in nonlinear systems; a new approach using
secants. arXiv preprint arXiv:2101.11162, 2021.

[335] Michael L Overton. On minimizing the maximum eigenvalue of a symmetric matrix.
SIAM Journal on Matrix Analysis and Applications, 9(2):256–268, 1988.

[336] RG O’Neill, GJ Marklin, TR Jarboe, C Akcay, WT Hamp, BA Nelson, AJ Redd,
RJ Smith, BT Stewart, JS Wrobel, et al. A fully relaxed helicity balance model for an
inductively driven spheromak. Physics of Plasmas, 14(11):112304, 2007.

[337] Shaowu Pan, Nicholas Arnold-Medabalimi, and Karthik Duraisamy. Sparsity-
promoting algorithms for the discovery of informative Koopman-invariant subspaces.
Journal of Fluid Mechanics, 917, 2021.

[338] Shaowu Pan and Karthik Duraisamy. Data-driven discovery of closure models. SIAM
Journal on Applied Dynamical Systems, 17(4):2381–2413, 2018.

[339] Shaowu Pan and Karthik Duraisamy. Physics-informed probabilistic learning of linear
embeddings of nonlinear dynamics with guaranteed stability. SIAM Journal on Applied
Dynamical Systems, 19(1):480–509, 2020.



207
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Appendix A

DERIVATION OF SINDY CONSTRAINTS

In Sec. 3.4, constraints were derived for the POD-Galerkin model coefficients from global

conservation laws; the goal here is to rewrite these constraints to be compatible with the

formulation of the SINDy system identification method. The conclusions for the global

conservation of energy were: 1) no constant terms, 2) an anti-symmetry constraint on the

linear part of the coefficient matrix ξ in Eq. (3.20), and 3) a more complicated energy-

preserving structure in the quadratic coefficients in Eq. (3.21). Consider a quadratic library

in a set of r modes, ordered as Θ(a) = [a1, ..., ar, a1a2, ..., ar−1ar, a
2
1, ..., a

2
r] ∈ RpΘ . Note that

this arrangement of the polynomials in Θ differs from Loiseau et al. [257], so the indexing

and subscripts are also different here. First, the constraint on the linear part of the Galerkin

model in Eq. (3.12), aTLa≈ 0, will be considered. It can be rewritten in the SINDy notation

as

0 =

[
a1 · · · ar

] 
ξa1

1 · · · ξa1
r

...
. . .

...

ξarr · · · ξarr



a1

...

ar

 . (A.1)

Therefore, it can be concluded that ξ
aj
i =−ξaij for i, j ∈ {1, ..., r} and ξ

aj
i can be identified

by accessing the (i− 1)r + j index in the vector of model coefficients ξ. Note that only

the first r2 elements of ξ are accessed. For models of linear and quadratic polynomials,

pΘ = (r2 + 3r)/2 and the number of constraints from anti-symmetry of the linear coefficients

is NL = (r2 + r)/2. Thus there are now only rpΘ −NL = r(r2 + 2r − 1)/2 free parameters.

Since the constrained SINDy algorithm solves linear equality constraints of the formCsξ = d,
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one can write this out explicitly for r = 3,



1 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 1 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 1 0 · · ·

0 1 0 1 0 0 0 0 0 0 · · ·

0 0 1 0 0 0 1 0 0 0 · · ·

0 0 0 0 0 1 0 1 0 0 · · ·





ξa1
1

ξa2
1

ξa3
1

ξa1
2

ξa2
2

ξa3
2

ξa1
3

ξa2
3

ξa3
3



=



0

0

0

0

0

0


. (A.2)

The boundary conditions u · n̂= 0, J · n̂= 0, B · n̂= 0 guaranteed that the quadratic non-

linearities were energy-preserving, and thus that cubic terms in Eq. (3.14) vanish,

r∑
i,j,k=0

Qijkaiajak ≈ 0. (A.3)

This constraint is significantly more involved to reformat. Written in SINDy notation, this

is equivalent to

0 =

[
a1 · · · ar

] 
ξa1
r+1 ξa1

r+2 · · · ξa1
pΘ

...
...

...
...

ξarr+1 ξarr+2 · · · ξarpΘ





a1a2

...

ar−1ar

a2
1

...

a2
r


. (A.4)

Expand this all out and group the like terms, i.e. terms which look like a3
i , aia

2
j or aiajak,

i, j, k ∈ {1, ..., r}, i 6= j 6= k. All of the like terms can be straightforwardly shown to be
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linearly independent, so one can consider three constraints separately for the three types

of terms. The number of each of these respective terms is
(
r
1

)
= r, 2

(
r
2

)
= r(r − 1), and(

r
3

)
= r(r − 1)(r − 2)/6, for a total of r(r + 1)(r + 2)/6 =NQ constraints. With both con-

straints, there are rpΘ −NL −NQ = r(r − 1)(2r + 5)/6 free parameters, and Nc =NL +NQ

constraints. Further considering the quadratic case, one finds that coefficients which adorn

a3
i must vanish, ξaipΘ−r+i = 0. Now define

ξ̃ijk = ξai
r+ j

2
(2r−j−3)+k−1

. (A.5)

The second type of constraint, with i 6= j, produces

ξaipΘ−r+j =


ξ̃jij i < j

ξ̃jji i > j,

(A.6)

while the third type of constraint produces

ξ̃ijk + ξ̃jik + ξ̃kij = 0. (A.7)

This relation is equivalent to the energy-preserving condition in Eq. (3.21) and is an arbitrary

r generalization to the r = 3 constraint used in Loiseau et al. [257]. For the specific case where

the plasma system is Hamiltonian (for instance in ideal [307], Hall [453], and extended [2]

MHD without dissipation) and the measurements are assumed to be sufficient to represent

the Hamiltonian, one could alternatively use formulations of SINDy to directly discover the

Hamiltonian [90] and subsequently derive the equations of motion. Lastly, if the global

energy conservation constraint on the quadratic terms in the SINDy coefficient matrix Ξ is

written Csξ = 0, then the quadratic cross-helicity constraints in Eq. (3.25) can be written

AHcCsξ = AHcjk Cklξl = 0j.
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Appendix B

CONVERTING THE HALL-MHD EQUATIONS INTO
MAGNETIC FIELD UNITS

Compressible Hall-MHD in the limit of constant and uniform temperature is

ρ̇=−∇ · (ρu), (B.1)

u̇=−u · ∇u+
1

ρ

[
1

µ0

(∇×B)×B − 2T

mi

∇ρ+ ν̃∇2u+
ν̃

3
∇(∇ · u)

]
, (B.2)

Ḃ =−∇×
[
−u×B +

η

µ0

∇×B +
mi

eρµ0

(∇×B)×B − 2T

e

∇ρ
ρ

]
. (B.3)

The goal is to convert these equations into another system of equations that explicitly evolves

the configuration vector q = [Bu,B, BT ] originally defined in Eq. (3.7) to facilitate a single

POD-Galerkin model for all the MHD fields. Since T is constant and uniform here, BT is

omitted from the configuration vector. So q = [Bu,B] and the continuity equation is

ρ̇=−∇ ·

(√
ρ

µ0

Bu

)
(B.4)

Now the new magnetic field evolution is a simple change since Bu is substituted at a single

location and ∇× (∇ρ/ρ) = 0,

Ḃ =∇×

[
1
√
ρµ0

Bu ×B −
mi

eρµ0

(∇×B)×B

]
+

η

µ0

∇2B. (B.5)
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However the velocity equation becomes very complicated

Ḃu =
√
µ0∂t(

√
ρu) =

√
µ0

4ρ
(ρ̇u+2ρu̇) (B.6)

=

√
µ0

4ρ

[
−u∇·(ρu)+2ρ(−u·∇u+

1

ρ
[

1

µ0

(∇×B)×B−2T

mi

∇ρ+ν̃∇2u+
ν̃

3
∇(∇·u)])

]
=

√
µ0

4ρ

[
−u(∇ρ·u+ρ∇·u)−2ρu·∇u+

2

µ0

(∇×B)×B−4T

mi

∇ρ+2ν̃∇2u+
2ν̃

3
∇(∇·u)

]
.

Let’s evaluate it term by term:

− u(∇ρ · u+ ρ∇ · u)− 2ρu · ∇u (B.7)

=− 1

µ0
√
ρ
Bu(

1
√
ρ
∇ρ ·Bu + ρ∇ · Bu√

ρ
)− 2

√
ρ

µ0

Bu · ∇
Bu√
ρ

=− 1

µ0
√
ρ
Bu(

1
√
ρ
∇ρ ·Bu +

√
ρ∇ ·Bu −

∇ρ
2
√
ρ
·Bu)− 2

√
ρ

µ0

Bu · (−
∇ρ
2ρ

3
2

Bu +
∇Bu√
ρ

)

=− 1

µ0ρ
Bu(∇ρ ·Bu)−

1

µ0

Bu∇ ·Bu +
3

2µ0ρ
Bu(∇ρ ·Bu)−

2

µ0

Bu · ∇Bu

=− 1

µ0

[
Bu∇ ·Bu + 2Bu · ∇Bu −

1

2ρ
Bu(∇ρ ·Bu)

]

To address the first viscous term, the following simplification is required,

∇2 1
√
ρ

=∇ · (− 1

2
√
ρρ
∇ρ) =− 1

2
√
ρρ
∇2ρ+

3

4
√
ρρ2
∇ρ · ∇ρ. (B.8)

Now ∇2u can be evaluated in full,

∇2u=
1
√
µ0

∇2Bu√
ρ

=− ∇2ρ

2
√
µ0ρρ

Bu +
3Bu

4
√
µ0ρρ2

∇ρ · ∇ρ− 1
√
µ0ρρ

(∇ρ · ∇)Bu +
1
√
µ0ρ
∇2Bu

(B.9)

=
1
√
µ0ρ

[
∇2Bu −

∇2ρ

2ρ
Bu +

3

4ρ2
∇ρ · ∇ρ+

1

ρ
(∇ρ · ∇)Bu

]
.
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The remaining viscous term gives

∇(∇·u) =
1
√
µ0

∇(−∇ρ
2ρ

3
2

·Bu+
1
√
ρ
∇·Bu) (B.10)

=− 1

2
√
µ0ρρ

∇(∇ρ·Bu)+
3

4
√
µ0ρρ2

(∇ρ·Bu)∇ρ+
1
√
µ0ρ
∇(∇·Bu)−

1

2
√
µ0ρρ

(∇·Bu)∇ρ

=
1

2
√
µ0ρ

[
−1

ρ
∇(∇ρ·Bu)+

3

2ρ2
(∇ρ·Bu)∇ρ+2∇(∇·Bu)−

1

ρ
(∇·Bu)∇ρ

]
.

Putting the velocity field evolution altogether produces

Ḃu =− 1
√
ρµ0

(
1

2
Bu∇·Bu+Bu·∇Bu−

1

4ρ
Bu(∇ρ·Bu)−(∇×B)×B+

2Tµ0

mi

∇ρ) (B.11)

+ν

[
∇2Bu−

∇2ρ

2ρ
Bu+

3Bu

4ρ2
∇ρ·∇ρ+

1

ρ
(∇ρ·∇)Bu)−

1

6ρ
∇(∇ρ·Bu)

]

+ν

[
1

4ρ2
(∇ρ·Bu)∇ρ+

1

3
∇(∇·Bu)−

1

6ρ
(∇·Bu)∇ρ

]
.

In order for this to be quadratic in the temporal dependence, the density must be approxi-

mately time-independent. If that is the case then it can be seen by inspection that all of the

nonlinearities are quadratic in the magnetic and velocity fields. Then Equations (B.5) and

(B.11) can be summarized as in Eq. (3.11). Substituting in the expansion of q in the POD

basis, multiplying both sides by the spatial POD modes χj, and integrating over space leads

straightforwardly to the Galerkin model in Eq. (3.12).

The time-independent density limit produces

1

2ρ
(∇ρ ·Bu) =−∇ ·Bu. (B.12)
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The velocity field evolution can now be summarized:

Ḃu =− 1
√
ρµ0

(
1

2
Bu∇·Bu+Bu·∇Bu−

1

4ρ
Bu(∇ρ·Bu)−(∇×B)×B+

2Tµ0

mi

∇ρ) (B.13)

+ν

[
∇2Bu−

∇2ρ

2ρ
Bu+

3Bu

4ρ2
∇ρ·∇ρ+

1

ρ
(∇ρ·∇)Bu)−

1

6ρ
∇(∇ρ·Bu)

]

+ν

[
1

4ρ2
(∇ρ·Bu)∇ρ+

1

3
∇(∇·Bu)−

1

6ρ
(∇·Bu)∇ρ

]
.

If the density is also uniform in space, corresponding to the incompressible limit, the equa-

tions drastically simplify to:

Ḃ =
1
√
ρµ0

∇×
[
Bu ×B − di(∇×B)×B

]
+

η

µ0

∇2B, (B.14)

Ḃu =− 1
√
ρµ0

[
(Bu · ∇)Bu − (∇×B)×B

]
+ ν∇2Bu,

∇ ·B = 0, ∇ ·Bu = 0.

This is in fact the incompressible, viscoresistive Hall-MHD equations written in a form equiv-

alent to the Elsässer formulation [45, 133]. Notice the symmetries between the evolutions of

the magnetic and velocity fields (broken largely by the inclusion of the Hall-term). In the

limit of zero dissipation and di→ 0, one obtains

Ḃ =
1
√
ρµ0

[
(B · ∇)Bu − (Bu · ∇)B

]
, (B.15)

Ḃu =− 1
√
ρµ0

(Bu · ∇)Bu − (B · ∇)B +∇

(
B2

2

) ,
∇ ·B = 0, ∇ ·Bu = 0.

These are the incompressible ideal MHD equations.
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Appendix C

CLASSIFICATION AND PREDICTION OF PLASMA
STRUCTURES AND INSTABILITIES WITH NEURAL

NETWORKS

This chapter briefly describes collaborative work that attempts to predict a class of

plasma modes from a large DIII-D tokamak database. Much of this work was produced by

other researchers, so this section only provides some background information, some promising

results from Jalalvand et al. [187], and initial progress towards improved models in future

work.

While ROMs and deep learning predictors in the plasma physics community have already

been motivated elsewhere in this thesis, it is worth a quick review of why these methods are

so critical. Most future magnetic-confinement-fusion reactor designs require steady-state op-

eration for economic viability. In the context of high-performance tokamaks, steady-state

operation necessitates active real-time control of a number of complex instabilities includ-

ing edge-localized modes (ELMs) [239, 158], Alfvén eigenmodes (AEs) [86, 424], and more

general disruptions [363, 129]. Even fundamentally steady-state devices such as stellarators

will require sophisticated real-time control for modulating gas puff, divertor dynamics, and

transport [50]. Furthermore, instabilities can occur on time scales of milliseconds or even

microseconds. Subsequently, if plasma control schemes are built and updated in real-time,

they are limited to simple models such as those based on 1D transport [271], linearization

or local-expansions [227, 6, 302, 419, 207, 314, 441, 10, 11, 301], heuristics (based on prior

experimental knowledge) [145], the biorthogonal decomposition [246, 132, 131, 211, 209],

and so forth. Many of these models have been successfully employed for real-time control

in operational scenarios but the variety and complexity of Alfvén eigenmodes in toroidal
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Figure C.1: Possible future implementation illustrating how a capable deep learning model
could be used for real-time control of AEs. Figure adapted with permission from Hu, Wenhui,
et al. (2018). Active real-time control of Alfvén eigenmodes by neutral beam and electron
cyclotron heating in the DIII-D tokamak. Nuclear Fusion, 58(12), 124001.

devices pose many challenges for simple models, generalization to new datasets, and analytic

methods. The eventual goal of the following work is to train deep learning models with

sufficient performance to be integrated into the DIII-D PCS real-time control system as in

Fig. C.1.

C.1 Instability prediction and classification within plasma physics and fusion

There has already been remarkable success in machine learning for disruption identification

and real-time control in tokamaks [74, 364, 363, 309, 214, 129], including high-performance

models that are not limited to a specific device [300]. There has also been recent deep

learning work for AE activity, which utilized manually-labeled spectrogram data from the
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TJ-II stellarator [102] and COMPASS tokamak [403] for automated identification of these

modes in diagnostic data from a single magnetic probe. The former paper focuses on a

binary classification of the spectrogram pixels, indicating whether each pixel corresponds

to Alfvénic MHD activity or not. The latter focuses specifically on identifying a useful

feature space for unstable reversed-shear Alfvén eigenmodes (RSAEs), which exhibit a unique

frequency-sweeping behavior. A recent paper also showed that AE “mode character” (i.e.

whether the activity is chirping, avalanching, fixed frequency, or quiescent) can be effectively

classified [444]. All three papers indicate promising avenues for future work. Two places

for improvement stem from these initial studies using 1) inputs that are single spectrograms

from magnetic probes, meaning there is no ability to use spatial correlations or identify

internal modes that do not appear near the device walls, and 2) there was no attempt

made at discrimination between different kinds of plasma dynamics. Prior collaborative

work improved on these studies substantially by utilizing high-resolution spatiotemporal

data from a large database, described further below.

C.1.1 Alfvén eigenmodes

AEs are a class of common instabilities observed in tokamaks and other plasma devices. Un-

fortunately, some types of AE instability, such as energetic particle resonance, can lead to con-

finement loss and damage to plasma-facing components of the device. The database used in

this work (described in Section C.2) distinguishes between several types of AE activity: Low-

frequency modes (LFMs . 50 kHz, these “Christmas light” patterns have been formerly char-

acterized as BAAE modes [166]), Beta-induced Alfvén eigenmodes (BAE ∼ 30− 150 kHz),

Ellipticity Alfvén eigenmodes (EAE ∼ 150− 200 kHz), Reversed-Shear Alfvén eigenmodes

(RSAE ∼ 50− 200 kHz), and Toroidal Alfvén eigenmodes (TAE ∼ 90− 200 kHz) [166, 268].

The quoted frequency ranges for each type are approximate, specific to DIII-D, and can

vary significantly in differing DIII-D parameter regimes such as L-mode or H-mode. The AE

modes are further described in Table C.1, where references to the relevant theoretical and

experimental manuscripts can also be found.
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Acronym Name Cause
BAE [429, 168, 170] Beta Compressibility
EAE [38, 124] Ellipticity mθ and mθ + 2

LFM [166] Low-frequency modes
Hot electrons,
qmin ∼ rational

RSAE [397, 219] Reversed-shear qmin

TAE [88, 87, 169, 443] Toroidal mθ and mθ + 1

Table C.1: Description of the AE activity considered in this work, adapted from Heid-
brink [167]. Recall that the poloidal wave number is denoted mθ and the minimum value of
the safety factor is denoted qmin.

Lastly, AEs are an excellent choice for training predictive models, because there are a wide

range of experimental actuators that can be used for real-time control of different AE activity.

Recent work indicates TAE suppression by resonant magnetic perturbations (RMPs) in the

EAST tokamak [248] and AE stabilization in DIII-D via a controlled energetic ion density

ramp [418]. For a review of potential AE control avenues, see Garcia-Muñoz et al. [134].

C.1.2 Electron cyclotron emission

Electron cyclotron emission (ECE) provides direct local measurements of the electron tem-

perature for thermal DIII-D plasmas [15], and as such, can provide spatiotemporally-localized

information about AE activity. The electron temperature and all ECE data is reported in

keV throughout the paper. The DIII-D ECE diagnostic data is obtained at 500 kHz, in a sin-

gle toroidal cross-section, at 40 different channels corresponding to varying radial locations,

as shown in Fig. C.2. Each ECE channel spans an approximately 1− 2 cm radial extent,

which is small compared to AE structure (most of the time, an AE mode can be seen across

several channels).

Properly capturing the spatial correlations is difficult because the ECE radial positions

change with the magnetic field, and therefore can vary substantially during startup operation.

The first few ECE channels regularly view data that is outside the last closed flux surface

(LCFS); this data is not a trustworthy measurement. In fact, any signal from outside the
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LCFS is not blackbody emission. At such locations, the measured emissions are typically a

mix of downshifted X-mode radiation from the core, scrambled O-mode radiation, and other

“background” emissions (see most plasma physics textbooks for definitions of the X and O

waves [412]). Although some plasma instabilities or features can sometimes be seen on these

channels, the change in emissions means the measurements can no longer be interpreted as

local. Despite this spatial variability and data corruption, initial work used the full, raw,

unprocessed ECE data, i.e. only the ECE channel indices corresponding to the relative radial

positions of the measurements. This has the advantage that the magnetic field evolution is

not required for this analysis.

In summary, machine learning models are directly trained on the full, raw, unprocessed

ECE time series data, including rare measurements below the cutoff and corrupted measure-

ments from outside the LCFS. Despite these simplifications, high classification and prediction

performance is obtained in initial work [187], and it is interesting that high performance is

accessible with minimal data processing.

C.2 The 2009-2017 DIII-D AE energetic particle database

A high-resolution, informative, and properly-labeled database is typically required for ef-

fectively training advanced machine learning models. In that regard, a current ramp AE

dataset based on Heidbrink et al. [166] is used for training the models in this work. The

labels in this DIII-D database cover many years of operation and a very broad parameter

space. As is described below, these manual labels are fairly imprecise, but this degradation

in label quality is somewhat ameliorated by the data quantity.

The dataset consists of 1139 discharges collected between years 2009-2017. Figure C.3

depicts the database AE labels for the DIII-D discharge 170670 superimposed on several

spectrograms of the more illustrative ECE signals. Special marks are added to better visually

indicate the various AEs. The database was constructed by using a few different experimental

diagnostics to cross-validate the AE label choices, especially when concurrent AEs were

present. To ensure a variety of safety factor profiles and to facilitate mode classification,
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Figure C.2: Illustration of the 40 radial ECE measurement locations alongside the closed
(solid) and open (dashed) flux surfaces for an example DIII-D discharge. The ECE radial
locations can vary significantly in each discharge, and measurements outside the last closed
flux surface are not local or accurate.
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Figure C.3: Illustration of several post-processed (denoised) ECE spectrograms for discharge
170670. The vertical white lines and labels indicate the database timestamps and correspond-
ing instabilities that are used for training the model. The labels indicate only approximate
occurrence and there can be substantial regions of unlabeled AE activity. For the reader,
some extra colored circles are added to this image to better visualize the different plasma
modes.
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Poloidal plasma current, Iθ Iθ ≤ 1.6 MA
Toroidal magnetic field, Bφ 0.5≤Bφ ≤ 2.1 T
Normalized Beta, βN 0.1≤ βN ≤ 3.2
Elongation, κE 1.1≤ κE ≤ 2.2
Triangularity, δT −0.4≤ δT ≤ 1.0
Chord-averaged density, ne 0.4≤ ne/1019 ≤ 5.0 m−3

Central electron temperature, Te Te ≤ 7.6 keV
Central ion temperature, Ti Ti ≤ 11.4 keV
Operational modes L and H modes
Neutral beam injection Deuterium
Dominant impurity Carbon

Table C.2: Tabulation of the broad parameter regime that is spanned by the DIII-D AE
database.

selected times in the discharge are all during the first 1.9 s of the discharge, when the safety

factor profile steadily evolves. Selected shots had a wide variety of purposes but nearly all

dedicated energetic particle experiments are included. Time slices for the labels are chosen to

sample either different plasma conditions or different types of mode activity. Subsequently,

a given discharge may have only a single AE label or as many as nine labels. In total, the

database spans the conditions in Table C.2. More details about the labeling process can be

found in [166].

C.3 Summary of results from prior work

Table C.3 lists the performance from initial work in Jalalvand et al. [187] of a 2-layer reser-

voir computing network (RCN) with 8K-500 nodes per layer on the validation set. The table

shows the imbalanced nature of the problem; in total, only 0.02% of the validation set are

labeled as an AE (the training set exhibits a similar percentage). This fact is why true-

positive-ratio (TPR) and false-positive-ratio (FPR) are the primary metrics. Reporting the

accuracy of the model would be profoundly misleading; a model that never predicts AE ac-

tivity would report accuracy above 99%. The strong performance with RCNs is encouraging

for continued machine learning work in the future.
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Table C.3: Performance of a 2-layer RCN with 8K-500 nodes per layer on the validation set.
A threshold of 0.2 has been applied to binarize the model output. There are 566 labeled
AEs in total.

AE TP FP TN FN TPR FPR
BAE 75 46,982 470,368 17 0.82 0.09
EAE 17 11,976 566,324 9 0.65 0.02
LFM 8 4,102 587,088 3 0.73 0.01
RSAE 167 48,319 417,211 13 0.93 0.10
TAE 248 76,133 330,057 9 0.97 0.19
Total 515 187,512 2,371,048 51 0.91 0.07

C.4 Recent attempts at spatiotemporally-localized AE classification

There are two primary improvements that can facilitate more advanced machine learning

predictors for AE activity, (1) improved database labels that are unique to each ECE channel,

facilitating spatially-localized machine learning predictors, and (2) data cleaning by mapping

the channels to the normalized plasma radius, removing data outside the LCFS, and removing

corrupt ECE data. First, the original database labels are used with the data cleaning in (2).

C.4.1 First attempt: spatiotemporal-local convolutional neural networks

A new 2-layer convolutional neural network (CNN) was designed for classification. In order to

fix corrupted data, and capture spatial correlations, a number of steps were taken: mapping

the channels to normalized radius ρn, zeroing out channels outside the LCFS, and arranging

the full 40-channel ECE data as an image in (ρn, t) space for each discharge. Only 901 of the

database discharges contain the time-resolved data required to perform this mapping from

channels to ρn. The ECE measurement ρn locations change a bit over the discharge as the

magnetic field evolves, so a series of ρn values are computed every 50 ms for each discharge

and then interpolated onto the ECE time-base for mapping the channels at every time. It

is common for ECE channels to move by a few cm during a discharge, and occasionally an

ECE channel can even swap relative positions with a neighboring ECE channel. As Fig. C.4
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illustrates, ECE channels 1-5 are also frequently outside the LCFS, and should be discarded.

To summarize the details, the channel data should be preprocessed by performing the

following set of steps:

1 Extract the ECE time series and radial location data. The ECE data is initially a

matrix of size [N, M, 40].

2 Every 50 ms, extract the effective plasma radius ρn from EFIT [240] or other real-

time equilibrium reconstruction software. If need be, obtain density and magnetic field

profiles for estimating ECE frequency cutoffs [49] for discarding corrupt data. This is

an exceedingly rare occurrence in the dataset so one can safely ignore the cutoffs.

3 At each 50 ms time slice, map the channels to ρn. Organize channels from smallest to

largest ρn, and zero out channels beyond the LCFS, |ρn|> 1. These channels effectively

are ignored by becoming part of the zero padding in the next step. Interpolate the new

ρn values to the original timebase consisting of M slices.

4 Since ECE measurements observe different radial regions in different discharges, pad

and interpolate the rest of the “image” in the (t, ρn) ∈ [0, 1.9]× [−1.2, 1.2] plane with

zeros, with final size [N, M, Nρn ] (i.e. there is only “vertical” padding in the ρn di-

rection), where Nρn is the number of interpolated points in the ρn direction. Previous

studies have shown that padding images had minor effects on the network perfor-

mance [164]. Notice that the range −1.2≤ ρn ≤ 1.2 is slightly enlarged past the LCFS

so that the border is comfortably zero-padded. The zero-padding standardizes the

inputs into a rectangular shape, a requirement for input into a standard CNN archi-

tecture.

5 Uniformly slice the images into windows, so that each image is now of size

[N, MW , Nρn ], i.e. a piece of the original matrix of size [N, M, Nρn ].
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Figure C.4: Contours of ρn as a function of the time t (x-axis) and the shot number (y-
axis) for the 901 database discharges containing the required data to map each of the 40
channels to ρn. Negative ρn values correspond to the inner radii values past the magnetic
axis. Contour rows are sorted by the first temporal value for a color gradient that improves
the visualization. The primary conclusion is that ECE channels 1-4 are often outside the
LCFS (|ρn|> 1), while channels 4-8 and 35-40 occasionally dip outside as well. During
pre-processing, any ECE data outside the LCFS is set to zero.

6 Optionally apply a normalization. In previous work, it was found that global normal-

ization to zero-mean-unit-variance signals worked well, so this normalization is used for

the following CNN model. The mean and variance are computed only over the training

set.

Inputs to the CNN are now organized as a normalized stack of temporally and spatially

ordered “partial images” of each discharge. In particular, the spatial correlations have been

unscrambled from the raw data, and the temporal correlations are only preserved within each

window. The number of windows to use is now a model hyperparameter, and has the effect

of changing how much temporal memory is available in a given input image, since temporal

correlations outside each window are lost.
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Figure C.5: After mapping every ECE measurement to (t, ρn), each ECE channel is zero-
padded and sliced into a number of time windows. A basic CNN is composed of a series
of convolution and pooling layers, typically followed by a small feed-forward network. The
convolutional layers learn the important features of the data. The sigmoid activation layer
outputs the probability for each class between 0 and 1. The probabilities above a threshold,
here equal to 0.2, are highlighted in grey and register as a true positive if they are within
tlabel of the correct AE label.

However, it was found that CNNs trained with these database labels struggle to find

performance greater than ∼ 70% TPR or so, and very quickly overfit to the data. The loss,

TPR, and other metrics are summarized in Fig. C.6. This poor training performance is true

despite varying all of the hyperparameters by some orders of magnitude, providing a hint

that the fundamental issue is the database labels, not the model. This is a sensible result

− the database labels are not unique to each ECE channel so the model is inevitably being

trained on many false positives and many false negatives, providing an upper bound on the

performance achievable with any deep learning model. But this investigation was valuable

because it motivated a high-precision labeling of AEs on a small subset of the database.

C.4.2 High precision database labels

As was discussed, the inadequacy of the AE labels in the full database prevent deep learning

models from high performance TPR/FPR and prevent accurate spatially-localized predic-

tions, since ground-truth labels are not specific to ECE channel.

In response, ECE-channel-specific labels for 20 very active AE discharges were produced
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Figure C.6: CNN training indicates the model quickly overfits, although the baseline valida-
tion performance is reasonable. These trends are quite insensitive to hyperparameter scans,
providing evidence that the fundamental issues are the data and associated labels.

by manually examining all 20× 40 = 800 ECE channel spectrograms and providing specific

time and frequency windows for the labels (a box is drawn on the spectrogram where the

mode appears). This manual examination is made significantly easier by first using image

processing techniques to provide denoised spectrograms that highlight the AE activity [4].

Although this is a very small subset of the original database, each spectrogram contains

∼ 950, 000 data points, meaning the data can still be used to train deep learning models on

a large percentage of ∼ 760 million data points. Because EAE is quite rare in this new, small

database, the focus is on prediction and classification of LFM, BAE, TAE, and RSAE. The

new database labels and predictions are illustrated for two active ECE channels during ECE

discharge 132710 in Fig. C.7 and the percentage of AE activity in the discharges, broken down

by ECE channel, is illustrated in Fig. C.8. Overall, 93.4% of the data has no AE activity

whatsoever. Although this data is still quite imbalanced, this is a substantial improvement

over the original database where it was estimated that over 99% of the data contained no
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Figure C.7: In order to facilitate more accurate NN predictions, a small dataset of 20 dis-
charges was developed and contains high-precision labels unique for each ECE channel. This
illustration shows two ECE channel time series for DIII-D discharge 132710, along with the
pre-processing of the data into denoised spectrograms, the manual labels corresponding to
each ECE channel, and the predictions on this training data using a simple neural network.

AE activity (or at least no AE labels).

As a first attempt, a simple two-layer perceptron (MLP) (also called a feedforward net-

work) was trained directly on the denoised spectrogram data from this new database. Each

input is a single time slice from the denoised spectrogram, consisting of a feature vector of

length equal to the number of frequency points in the spectrogram. Although the inputs

contain the frequency information in the spectrogram, each input corresponds to a single

time slice and therefore there is no temporal memory.

The initial results are promising and the strength of the predictions appear to come

from both the data label quality and the denoising; for instance, the spectrogram denoising

appears to significantly improve performance over unprocessed spectrograms and suggests

additional data pre-processing may be worthwhile. In order to decide when the model has
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Figure C.8: A summary of the total percentage of AE activity in each ECE time series,
plotted against discharge and channel number. TAE and RSAE are present in most of
the discharges, and TAE is almost always between channels 1-22 while RSAE tends to be
exhibited between channels 7-22 and 35-40. BAE and LFM are significantly more rare in
this dataset, and tend to occur over smaller timescales.

started overfitting to the training data, the 20 discharges were randomly split into 15 training

discharges and 5 validation discharges. The MLP accuracy, precision, TPR and FPR are

plotted as a function of the number of training epochs in Fig. C.9. For each AE type,

the training performance is quite high but the validation performance is significantly lower.

TAE and RSAE show reasonable validation performance but BAE and LFM indicate low

performance. This low performance may be a symptom of the simplicity of this MLP.

The MLP is only two layers, and the input data contains no temporal memory for the

MLP to extract. LFMs in particular exhibit a complex “Christmas-light” pattern in time,

meaning one might expect that identifying these modes would be particularly sensitive to

temporal memory. Both of these drawbacks to this first attempt are clear places for further

improvement.

C.4.3 Conclusion

Prior collaborative work was furthered by the construction of a spatially-localized set of

labels for AE activity identification with machine learning methods. Initial work with this

smaller database shows that simple feedforward networks can already produce reasonable

spatiotemporally-localized AE classification from denoised spectrograms of individual DIII-
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Figure C.9: The MLP accuracy, precision, TPR (recall), and FPR as the neural network
trains. One can see high performance on the training data (solid), but only reasonable
validation (dashed) performance for TAE and RSAE. LFM and BAE are significantly under-
represented in the data and the validation performance is low.

D ECE channel data.

Although this research indicates that accurate, spatiotemporally localized AE classifica-

tion is possible from ECE diagnostic data, there remains a lot more work to develop models

that are capable enough and compatible with real-time control systems in fusion reactors such

as DIII-D. Integrated models, for instance obtained by enriching the input data by a suite of

diagnostics including ECE, beam-emission spectroscopy, and magnetics, may improve pre-

dictions. Similar gains may be found by investigating more complex deep learning methods

and the role of temporal memory in the ML predictions. Future work with multi-machine

datasets could also investigate building universal AE detection models for application across

toroidal plasma devices.
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